ScaleNet: A Shallow Architecture for Scale Estimation

Related tags

Deep LearningScaleNet
Overview

ScaleNet: A Shallow Architecture for Scale Estimation

Repository for the code of ScaleNet paper:

"ScaleNet: A Shallow Architecture for Scale Estimation".
Axel Barroso-Laguna, Yurun Tian, and Krystian Mikolajczyk. arxiv 2021.

[Paper on arxiv]

Prerequisite

Python 3.7 is required for running and training ScaleNet code. Use Conda to install the dependencies:

conda create --name scalenet_env
conda activate scalenet_env 
conda install pytorch==1.2.0 -c pytorch
conda install -c conda-forge tensorboardx opencv tqdm 
conda install -c anaconda pandas 
conda install -c pytorch torchvision 

Scale estimation

run_scalenet.py can be used to estimate the scale factor between two input images. We provide as an example two images, im1.jpg and im2.jpg, within the assets/im_test folder as an example. For a quick test, please run:

python run_scalenet.py --im1_path assets/im_test/im1.jpg --im2_path assets/im_test/im2.jpg

Arguments:

  • im1_path: Path to image A.
  • im2_path: Path to image B.

It returns the scale factor A->B.

Training ScaleNet

We provide a list of Megadepth image pairs and scale factors in the assets folder. We use the undistorted images, corresponding camera intrinsics, and extrinsics preprocessed by D2-Net. You can download them directly from their main repository. If you desire to use the default configuration for training, just run the following line:

python train_ScaleNet.py --image_data_path /path/to/megadepth_d2net

There are though some important arguments to take into account when training ScaleNet.

Arguments:

  • image_data_path: Path to the undistorted Megadepth images from D2-Net.
  • save_processed_im: ScaleNet processes the images so that they are center-cropped and resized to a default resolution. We give the option to store the processed images and load them during training, which results in a much faster training. However, the size of the files can be big, and hence, we suggest storing them in a large storage disk. Default: True.
  • root_precomputed_files: Path to save the processed image pairs.

If you desire to modify ScaleNet training or architecture, look for all the arguments in the train_ScaleNet.py script.

Test ScaleNet - camera pose

In addition to the training, we also provide a template for testing ScaleNet in the camera pose task. In assets/data/test.csv, you can find the test Megadepth pairs, along with their scale change as well as their camera poses.

Run the following command to test ScaleNet + SIFT in our custom camera pose split:

python test_camera_pose.py --image_data_path /path/to/megadepth_d2net

camera_pose.py script is intended to provide a structure of our camera pose experiment. You can change either the local feature extractor or the scale estimator and obtain your camera pose results.

BibTeX

If you use this code or the provided training/testing pairs in your research, please cite our paper:

@InProceedings{Barroso-Laguna2021_scale,
    author = {Barroso-Laguna, Axel and Tian, Yurun and Mikolajczyk, Krystian},
    title = {{ScaleNet: A Shallow Architecture for Scale Estimation}},
    booktitle = {Arxiv: },
    year = {2021},
}
Owner
Axel Barroso
Computer Vision PhD Student
Axel Barroso
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X

25 Dec 21, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022