A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

Overview

CapsGNN

PWC codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019).

Abstract

The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph embeddings. Inspired by the Capsule Neural Network (CapsNet), we propose the Capsule Graph Neural Network (CapsGNN), which adopts the concept of capsules to address the weakness in existing GNN-based graph embeddings algorithms. By extracting node features in the form of capsules, routing mechanism can be utilized to capture important information at the graph level. As a result, our model generates multiple embeddings for each graph to capture graph properties from different aspects. The attention module incorporated in CapsGNN is used to tackle graphs with various sizes which also enables the model to focus on critical parts of the graphs. Our extensive evaluations with 10 graph-structured datasets demonstrate that CapsGNN has a powerful mechanism that operates to capture macroscopic properties of the whole graph by data-driven. It outperforms other SOTA techniques on several graph classification tasks, by virtue of the new instrument.

This repository provides a PyTorch implementation of CapsGNN as described in the paper:

Capsule Graph Neural Network. Zhang Xinyi, Lihui Chen. ICLR, 2019. [Paper]

The core Capsule Neural Network implementation adapted is available [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0

Datasets

The code takes graphs for training from an input folder where each graph is stored as a JSON. Graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"edges": [[0, 1],[1, 2],[2, 3],[3, 4]],
 "labels": {"0": "A", "1": "B", "2": "C", "3": "A", "4": "B"},
 "target": 1}

The **edges** key has an edge list value which descibes the connectivity structure. The **labels** key has labels for each node which are stored as a dictionary -- within this nested dictionary labels are values, node identifiers are keys. The **target** key has an integer value which is the class membership.

Outputs

The predictions are saved in the `output/` directory. Each embedding has a header and a column with the graph identifiers. Finally, the predictions are sorted by the identifier column.

Options

Training a CapsGNN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --training-graphs   STR    Training graphs folder.      Default is `dataset/train/`.
  --testing-graphs    STR    Testing graphs folder.       Default is `dataset/test/`.
  --prediction-path   STR    Output predictions file.     Default is `output/watts_predictions.csv`.

Model options

  --epochs                      INT     Number of epochs.                  Default is 100.
  --batch-size                  INT     Number fo graphs per batch.        Default is 32.
  --gcn-filters                 INT     Number of filters in GCNs.         Default is 20.
  --gcn-layers                  INT     Number of GCNs chained together.   Default is 2.
  --inner-attention-dimension   INT     Number of neurons in attention.    Default is 20.  
  --capsule-dimensions          INT     Number of capsule neurons.         Default is 8.
  --number-of-capsules          INT     Number of capsules in layer.       Default is 8.
  --weight-decay                FLOAT   Weight decay of Adam.              Defatuls is 10^-6.
  --lambd                       FLOAT   Regularization parameter.          Default is 0.5.
  --theta                       FLOAT   Reconstruction loss weight.        Default is 0.1.
  --learning-rate               FLOAT   Adam learning rate.                Default is 0.01.

Examples

The following commands learn a model and save the predictions. Training a model on the default dataset:

$ python src/main.py

Training a CapsGNNN model for a 100 epochs.

$ python src/main.py --epochs 100

Changing the batch size.

$ python src/main.py --batch-size 128

License

Comments
  •  Coordinate Addition module & Routing

    Coordinate Addition module & Routing

    Hi, thanks for your codes of GapsGNN. And I have some questions about Coordinate Addition module and Routing.

    1. Do you use Coordinate Addition module in this codes?
    2. In /src/layers.py, line 137 : c_ij = torch.nn.functional.softmax(b_ij, dim=0) . At this time, b_ij.size(0) == 1, why use dim =0 ?

    Thanks again.

    opened by S-rz 4
  • Something about reshape

    Something about reshape

    Hi @benedekrozemberczki ! Thank you for your work!

    I have a question at line 61 and 62 of CapsGNN/src/capsgnn.py

    hidden_representations = torch.cat(tuple(hidden_representations)) hidden_representations = hidden_representations.view(1, self.args.gcn_layers, self.args.gcn_filters,-1)

    Why you directly reshape L*N,D to 1,L,D,N instead of using permutation after reshape, e.g

    hidden_representations = hidden_representations.view(1, self.args.gcn_layers, -1,self.args.gcn_filters).permute(0,1,3,2)

    Thank you for your help!

    opened by yanx27 4
  • Reproduce Issues

    Reproduce Issues

    Hi, thanks for your PyTorch codes of GapsGNN. I try to run the codes on NCI, DD, and other graph classification datasets, but it doesn't work (For example, training loss converges to 2.0, and test acc is about 50% on NCI1 after several iterations.) How should I do if I want to run these codes on NCI, DD and etc? Thanks again.

    opened by veophi 1
  • D&D dataset

    D&D dataset

    I notice some datasets in your paper such as D&D dataset. May I know how to obtain these datasets? The processed datasets would be appreciated. Thank you.

    opened by try-to-anything 1
  • Other datasets

    Other datasets

    I notice some datasets in your paper such as RE-M5K and RE-M12K. May I know how to obtain these datasets? The processed datasets would be appreciated. Thank you.

    opened by HongyangGao 1
  • Not able to install torch-scatter with torch 0.4.1

    Not able to install torch-scatter with torch 0.4.1

    Hello,

    Thanks for sharing the implementation.

    While I'm try to run your code I get some error for installing the environment. I have torch 0.4.1, but not able to install torch-scatter.Got the following error: fatal error: torch/extension.h: No such file or directory

    But I can successfully install them for torch 1.0.

    Is your code working for torch 1.0? Or how to install torch-scatter for torch 0.4.1?

    Details:

    $ pip list Package Version


    backcall 0.1.0
    certifi 2018.8.24
    .... torch 0.4.1.post2 torch-geometric 1.1.1
    torchfile 0.1.0
    torchvision 0.2.1
    tornado 5.1
    tqdm 4.31.1
    traitlets 4.3.2
    urllib3 1.23
    visdom 0.1.8.5
    vispy 0.5.3
    .... ....

    $pip install torch-scatter

    opened by jkuh626 1
  • how to repeat your expriments?

    how to repeat your expriments?

    Enumerating feature and target values.

    100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 60/60 [00:00<00:00, 14754.82it/s]

    Training started.

    Epochs: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:05<00:00, 1.90it/s] CapsGNN (Loss=0.7279): 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.92it/s]

    Scoring.

    100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:00<00:00, 128.47it/s]

    Accuracy: 0.3333

    Accuracy is too small

    opened by robotzheng 1
  • default input dir for graphs is

    default input dir for graphs is "input"

    The README mentions the default train and test graphs to be in dataset/train and dataset/test, whereas they are in input/train and input/test respectively. The param_parser.py has the correct default paths nevertheless.

    opened by Utkarsh87 0
Releases(v_0001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023