A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

Overview

PDN

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021).

Abstract

In this work we propose Pathfinder Discovery Networks (PDNs), a method for jointly learning a message passing graph over a multiplex network with a downstream semi-supervised model. PDNs inductively learn an aggregated weight for each edge, optimized to produce the best outcome for the downstream learning task. PDNs are a generalization of attention mechanisms on graphs which allow flexible construction of similarity functions between nodes, edge convolutions, and cheap multiscale mixing layers. We show that PDNs overcome weaknesses of existing methods for graph attention (e.g. Graph Attention Networks), such as the diminishing weight problem. Our experimental results demonstrate competitive predictive performance on academic node classification tasks. Additional results from a challenging suite of node classification experiments show how PDNs can learn a wider class of functions than existing baselines. We analyze the relative computational complexity of PDNs, and show that PDN runtime is not considerably higher than static-graph models. Finally, we discuss how PDNs can be used to construct an easily interpretable attention mechanism that allows users to understand information propagation in the graph.

This repository provides a PyTorch implementation of PDN as described in the paper:

Pathfinder Discovery Networks for Neural Message Passing. Benedek Rozemberczki, Peter Englert, Amol Kapoor, Martin Blais, Bryan Perozzi. WebConf, 2021. [Paper]

Citing

If you find PDN useful in your research, please consider citing the following paper:

>@inproceedings{rozemberczki2021pdn,    
                title={{Pathfinder Discovery Networks for Neural Message Passing}},    
                author={Benedek Rozemberczki and Peter Englert and Amol Kapoor and Martin Blais and Bryan Perozzi},    
                booktitle = {Proceedings of The Web Conference 2021},
                year={2021},    
                organization={ACM}    
                }

Requirements

The codebase is implemented in Python 3.8.5. package versions used for development are just below.

tqdm               >=4.50.2
numpy              >=1.19.2
texttable          >=1.6.3
argparse           >=1.1.0
torch              >=1.7.1
torch-geometric    >=1.6.3
torch_spline_conv  >=1.2.0
torch_sparse       >=0.6.8
torch_scatter      >=2.0.5
torch_cluster      >=1.5.8

Options

The training of a PDN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path            STR    Edge list NumPy array.        Default is `input/edges.npy`.
  --node-features-path   STR    Node features NumPy array.    Default is `input/node_features.npy`.
  --edge-features-path   STR    Edge features NumPy array.    Default is `input/edge_features.npy`.
  --target-path          STR    Target classes NumPy array.   Default is `input/target.npy`.

Model options

  --seed                INT     Random seed.                   Default is 42.
  --epochs              INT     Number of training epochs.     Default is 200.
  --test-size           FLOAT   Training set ratio.            Default is 0.9.
  --learning-rate       FLOAT   Adam learning rate.            Default is 0.01.
  --edge-filters        INT     Number of PDN filters.         Default is 32.
  --node-filters        INT     Number of GCN filters.         Default is 32.

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a PDN model for a 100 epochs.

$ python src/main.py --epochs 100

Training a model with a different layer structure:

$ python src/main.py --node-filters 16

License

You might also like...
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Comments
  • Multiplex datasets

    Multiplex datasets

    Hi,

    I really like your paper and was more interested in it, so I took into multiplex datasets, and for these two datasets in table 4, it is written that both of them have 2 classes. On the other hand, you have cited DMGI paper as a source of your datasets, but DMGI paper has 3 classes for each of them. Maybe I got something wrong and clarification would help. So, could you please help me with this? Why do you have two classes instead of three and how did you implement this?

    Thank you! :)

    opened by siri-ius 2
  • About dataset and `edge_features`

    About dataset and `edge_features`

    Hi there!

    I have some questions,

    • Could you please tell me which dataset you used in this repo? It doesn't seem to be any dataset in your paper.

    • How was edge_features generated?

    Thanks.

    opened by EdisonLeeeee 1
Releases(v_0001)
Owner
Benedek Rozemberczki
PhD candidate at The University of Edinburgh @cdt-data-science working on machine learning and data mining related to graph structured data.
Benedek Rozemberczki
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022