BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

Overview

BPEmb

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural language processing.

WebsiteUsageDownloadMultiBPEmbPaper (pdf)Citing BPEmb

Usage

Install BPEmb with pip:

pip install bpemb

Embeddings and SentencePiece models will be downloaded automatically the first time you use them.

>>> from bpemb import BPEmb
# load English BPEmb model with default vocabulary size (10k) and 50-dimensional embeddings
>>> bpemb_en = BPEmb(lang="en", dim=50)
downloading https://nlp.h-its.org/bpemb/en/en.wiki.bpe.vs10000.model
downloading https://nlp.h-its.org/bpemb/en/en.wiki.bpe.vs10000.d50.w2v.bin.tar.gz

You can do two main things with BPEmb. The first is subword segmentation:

>> bpemb_zh = BPEmb(lang="zh", vs=100000) # apply Chinese BPE subword segmentation model >>> bpemb_zh.encode("这是一个中文句子") # "This is a Chinese sentence." ['▁这是一个', '中文', '句子'] # ["This is a", "Chinese", "sentence"] ">
# apply English BPE subword segmentation model
>>> bpemb_en.encode("Stratford")
['▁strat', 'ford']
# load Chinese BPEmb model with vocabulary size 100k and default (100-dim) embeddings
>>> bpemb_zh = BPEmb(lang="zh", vs=100000)
# apply Chinese BPE subword segmentation model
>>> bpemb_zh.encode("这是一个中文句子")  # "This is a Chinese sentence."
['▁这是一个', '中文', '句子']  # ["This is a", "Chinese", "sentence"]

If / how a word gets split depends on the vocabulary size. Generally, a smaller vocabulary size will yield a segmentation into many subwords, while a large vocabulary size will result in frequent words not being split:

vocabulary size segmentation
1000 ['▁str', 'at', 'f', 'ord']
3000 ['▁str', 'at', 'ford']
5000 ['▁str', 'at', 'ford']
10000 ['▁strat', 'ford']
25000 ['▁stratford']
50000 ['▁stratford']
100000 ['▁stratford']
200000 ['▁stratford']

The second purpose of BPEmb is to provide pretrained subword embeddings:

>> type(bpemb_en.vectors) numpy.ndarray >>> bpemb_en.vectors.shape (10000, 50) >>> bpemb_zh.vectors.shape (100000, 100) ">
# Embeddings are wrapped in a gensim KeyedVectors object
>>> type(bpemb_zh.emb)
gensim.models.keyedvectors.Word2VecKeyedVectors
# You can use BPEmb objects like gensim KeyedVectors
>>> bpemb_en.most_similar("ford")
[('bury', 0.8745079040527344),
 ('ton', 0.8725000619888306),
 ('well', 0.871537446975708),
 ('ston', 0.8701574206352234),
 ('worth', 0.8672043085098267),
 ('field', 0.859795331954956),
 ('ley', 0.8591548204421997),
 ('ington', 0.8126075267791748),
 ('bridge', 0.8099068999290466),
 ('brook', 0.7979353070259094)]
>>> type(bpemb_en.vectors)
numpy.ndarray
>>> bpemb_en.vectors.shape
(10000, 50)
>>> bpemb_zh.vectors.shape
(100000, 100)

To use subword embeddings in your neural network, either encode your input into subword IDs:

>> bpemb_zh.vectors[ids].shape (3, 100) ">
>>> ids = bpemb_zh.encode_ids("这是一个中文句子")
[25950, 695, 20199]
>>> bpemb_zh.vectors[ids].shape
(3, 100)

Or use the embed method:

# apply Chinese subword segmentation and perform embedding lookup
>>> bpemb_zh.embed("这是一个中文句子").shape
(3, 100)

Downloads for each language

ab (Abkhazian)ace (Achinese)ady (Adyghe)af (Afrikaans)ak (Akan)als (Alemannic)am (Amharic)an (Aragonese)ang (Old English)ar (Arabic)arc (Official Aramaic)arz (Egyptian Arabic)as (Assamese)ast (Asturian)atj (Atikamekw)av (Avaric)ay (Aymara)az (Azerbaijani)azb (South Azerbaijani)

ba (Bashkir)bar (Bavarian)bcl (Central Bikol)be (Belarusian)bg (Bulgarian)bi (Bislama)bjn (Banjar)bm (Bambara)bn (Bengali)bo (Tibetan)bpy (Bishnupriya)br (Breton)bs (Bosnian)bug (Buginese)bxr (Russia Buriat)

ca (Catalan)cdo (Min Dong Chinese)ce (Chechen)ceb (Cebuano)ch (Chamorro)chr (Cherokee)chy (Cheyenne)ckb (Central Kurdish)co (Corsican)cr (Cree)crh (Crimean Tatar)cs (Czech)csb (Kashubian)cu (Church Slavic)cv (Chuvash)cy (Welsh)

da (Danish)de (German)din (Dinka)diq (Dimli)dsb (Lower Sorbian)dty (Dotyali)dv (Dhivehi)dz (Dzongkha)

ee (Ewe)el (Modern Greek)en (English)eo (Esperanto)es (Spanish)et (Estonian)eu (Basque)ext (Extremaduran)

fa (Persian)ff (Fulah)fi (Finnish)fj (Fijian)fo (Faroese)fr (French)frp (Arpitan)frr (Northern Frisian)fur (Friulian)fy (Western Frisian)

ga (Irish)gag (Gagauz)gan (Gan Chinese)gd (Scottish Gaelic)gl (Galician)glk (Gilaki)gn (Guarani)gom (Goan Konkani)got (Gothic)gu (Gujarati)gv (Manx)

ha (Hausa)hak (Hakka Chinese)haw (Hawaiian)he (Hebrew)hi (Hindi)hif (Fiji Hindi)hr (Croatian)hsb (Upper Sorbian)ht (Haitian)hu (Hungarian)hy (Armenian)

ia (Interlingua)id (Indonesian)ie (Interlingue)ig (Igbo)ik (Inupiaq)ilo (Iloko)io (Ido)is (Icelandic)it (Italian)iu (Inuktitut)

ja (Japanese)jam (Jamaican Creole English)jbo (Lojban)jv (Javanese)

ka (Georgian)kaa (Kara-Kalpak)kab (Kabyle)kbd (Kabardian)kbp (Kabiyè)kg (Kongo)ki (Kikuyu)kk (Kazakh)kl (Kalaallisut)km (Central Khmer)kn (Kannada)ko (Korean)koi (Komi-Permyak)krc (Karachay-Balkar)ks (Kashmiri)ksh (Kölsch)ku (Kurdish)kv (Komi)kw (Cornish)ky (Kirghiz)

la (Latin)lad (Ladino)lb (Luxembourgish)lbe (Lak)lez (Lezghian)lg (Ganda)li (Limburgan)lij (Ligurian)lmo (Lombard)ln (Lingala)lo (Lao)lrc (Northern Luri)lt (Lithuanian)ltg (Latgalian)lv (Latvian)

mai (Maithili)mdf (Moksha)mg (Malagasy)mh (Marshallese)mhr (Eastern Mari)mi (Maori)min (Minangkabau)mk (Macedonian)ml (Malayalam)mn (Mongolian)mr (Marathi)mrj (Western Mari)ms (Malay)mt (Maltese)mwl (Mirandese)my (Burmese)myv (Erzya)mzn (Mazanderani)

na (Nauru)nap (Neapolitan)nds (Low German)ne (Nepali)new (Newari)ng (Ndonga)nl (Dutch)nn (Norwegian Nynorsk)no (Norwegian)nov (Novial)nrm (Narom)nso (Pedi)nv (Navajo)ny (Nyanja)

oc (Occitan)olo (Livvi)om (Oromo)or (Oriya)os (Ossetian)

pa (Panjabi)pag (Pangasinan)pam (Pampanga)pap (Papiamento)pcd (Picard)pdc (Pennsylvania German)pfl (Pfaelzisch)pi (Pali)pih (Pitcairn-Norfolk)pl (Polish)pms (Piemontese)pnb (Western Panjabi)pnt (Pontic)ps (Pushto)pt (Portuguese)

qu (Quechua)

rm (Romansh)rmy (Vlax Romani)rn (Rundi)ro (Romanian)ru (Russian)rue (Rusyn)rw (Kinyarwanda)

sa (Sanskrit)sah (Yakut)sc (Sardinian)scn (Sicilian)sco (Scots)sd (Sindhi)se (Northern Sami)sg (Sango)sh (Serbo-Croatian)si (Sinhala)sk (Slovak)sl (Slovenian)sm (Samoan)sn (Shona)so (Somali)sq (Albanian)sr (Serbian)srn (Sranan Tongo)ss (Swati)st (Southern Sotho)stq (Saterfriesisch)su (Sundanese)sv (Swedish)sw (Swahili)szl (Silesian)

ta (Tamil)tcy (Tulu)te (Telugu)tet (Tetum)tg (Tajik)th (Thai)ti (Tigrinya)tk (Turkmen)tl (Tagalog)tn (Tswana)to (Tonga)tpi (Tok Pisin)tr (Turkish)ts (Tsonga)tt (Tatar)tum (Tumbuka)tw (Twi)ty (Tahitian)tyv (Tuvinian)

udm (Udmurt)ug (Uighur)uk (Ukrainian)ur (Urdu)uz (Uzbek)

ve (Venda)vec (Venetian)vep (Veps)vi (Vietnamese)vls (Vlaams)vo (Volapük)

wa (Walloon)war (Waray)wo (Wolof)wuu (Wu Chinese)

xal (Kalmyk)xh (Xhosa)xmf (Mingrelian)

yi (Yiddish)yo (Yoruba)

za (Zhuang)zea (Zeeuws)zh (Chinese)zu (Zulu)

MultiBPEmb

multi (multilingual)

Citing BPEmb

If you use BPEmb in academic work, please cite:

@InProceedings{heinzerling2018bpemb,
  author = {Benjamin Heinzerling and Michael Strube},
  title = "{BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

NLP Boot Camp (Jan) Synopsis Full Name: Prameya Mohanty Name of your School: Delhi Public School, Rourkela Class: VIII Title of the Project: iTransect

TheCodingHub 1 Feb 01, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
Rhasspy 673 Dec 28, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022