BlueFog Tutorials

Overview

BlueFog Tutorials

License

Welcome to the BlueFog tutorials!

In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks serve two purposes:

  • Help readers understand the basic concepts and theories of the decentralized optimization.
  • Help readers understand how to implement decentralized algorithms with the BlueFog library.

Contents

1 Preliminary

Learn how to write your first "hello world" program over the real multi-CPU system with BlueFog.

2 Average Consensus Algorithm

Learn how to achieve the globally averaged consensus among nodes in a decentralized manner.

3 Decentralized Gradient Descent

Learn how to solve a general distributed (possibly stochastic) optimization problem in a decentralized manner.

4 Decentralized Gradient Descent with Bias-Correction

Learn how to accelerate your decentralized (possibly stochastic) optimization algorithms with various bias-correction techniques.

5 Decentralized Optimization over directed and time-varying networks

Learn how to solve distributed optimization in a decentralized manner if the connected topology is directed or time-varying.

6 Asynchronous Decentralized Optimization

Learn how to solve a general distributed optimization problem with asynchronous decentralized algorithms.

7 Decentralized Deep Learning

Learn how to train a deep neural network with decentralized optimization algorithms.

Call for Contributions

This tutorial only contains the very basic concepts, algorithms, theories, and implementations for decentralized optimization. It misses many important recent progress in the algorithm development and theory in the decentralized optimization community. We hope you will consider using BlueFog in the experiment of your new decentralized algorithm and summarize your ideas into a Jupyter notebook tutorial.

About BlueFog Team

The BlueFog Team involves several researchers and engineers that target to make decentralized algorithms practical for large-scale optimization and deep learning. We hope to bridge the gap between the theoretical progress of decentralized algorithms in the academia and the real implementation in the industry. We hope more researchers and engineers can join us to contribute to the community of decentralized optimization.

Other Resources:

Faster Learning over Networks and BlueFog, BlueFog Team, invited talk at MLA, 2020 [slides]

Parallel, Distributed, and Decentralized optimization methods, Wotao Yin, Tutorial in ECOM2021, 2021 [Materials]

Citation

Feel free to share the BlueFog repo and this tutorial to anyone that has an interest. If you use BlueFog, please cite it as follows:

@software{bluefog2021_4616052,
  author       = {BlueFog Team},
  title        = {BlueFog: Make Decentralized Algorithms Practical For Optimization and Deep Learning},
  month        = Mar.,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.4616052},
  url          = {https://doi.org/10.5281/zenodo.4616052}
}
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022