This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

Overview

candle-simulator

arXiv AAAI Get the dataset GitHub

This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset.

The rendered version of the dataset is provided at the IITH-CANDLE repository.

Environment Setup

Download and install Blender. Make sure that it's accessible from the command line.

Note: Tests and rendering were performed on version 2.90. Unless future versions include breaking changes, functionality should be largely unaffected. We will be happy to receive a PR / issue if any incompatibilities arise.

Running the script

The main script candle_simulator.py runs in an instance of blender invoked by the command:

# starts blender in the background, without audio and runs the python script
$ blender -b -noaudio -P candle_simulator.py

Sample images from IITH-CANDLE

IITH-CANDLE grid The rendered version of the dataset is provided at the IITH-CANDLE repository.

Extending IITH-CANDLE

Each factor of variation can be independently modified or extended by simply editing or adding .blend files under ./data/ consisting of just that factor. The script then combines them independently while generating the dataset.

Steps to extend

  1. Add in or modify a factor, say we add ./objects/monkey.blend. Ensure that the filename and the property name of the factor in Blender match.
  2. Update properties: object_type to include monkey.
  3. Rendering a version now will augment IITH-CANDLE with all variants of monkey.

Conventions followed

Factor Conventions
objects We recommend the objects fit in a 1x1x1m space at the origin. This helps with uniform translation and scaling. Also update properties: object_type.
scenes They are node-based world textures pointing to a HDRI image. We recommend just copying an existing one over and modifying the image to point to the required one. Also update scenes and bounds in the script with the XY coordinates where objects are allowed to be placed.
size Just modify properties: size in the script. The objects will be scaled at runtime.
rotation Just modify properties: rotation in the script. The objects will be rotated at runtime.
lights To modify the type of light, edit lights.blend. If only the positions have to be changed, just edit lights and light_position correspondingly.
color (materials) Vanilla Blender materials. Just modify properties: color as well.

How to cite our work

If you use IITH-CANDLE, please consider citing:

@article{candle, 
title={On Causally Disentangled Representations},  
journal={Proceedings of the AAAI Conference on Artificial Intelligence}, 
author={Abbavaram Gowtham Reddy, Benin Godfrey L, and Vineeth N Balasubramanian}, 
year={2022},
month={February}
}

License

This work is licensed under the MIT License and the dataset itself is licensed under the Creative Commons Attribution 4.0 International License.

Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022