3D Human Pose Machines with Self-supervised Learning

Overview

3D Human Pose Machines with Self-supervised Learning

Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self-supervised Learning”. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019.

This repository implements a 3D human pose machine to resolve 3D pose sequence generation for monocular frames, and includes a concise self-supervised correction mechanism to enhance our model by retaining the 3D geometric consistency. The main part is written in C++ and powered by Caffe deep learning toolbox. Another is written in Python and powered by Tensorflow.

Results

We proposed results on the Human3.6M, KTH Football II and MPII dataset.

   

   

   

License

This project is Only released for Academic Research Use.

Get Started

Clone the repo:

git clone https://github.com/chanyn/3Dpose_ssl.git

or directly download from https://www.dropbox.com/s/qycpjinof2ishw9/3Dpose_ssl.tar.gz?dl=0 (including datasets and well-compiled caffe under cuda-8.0)

Our code is organized as follows:

caffe-3dssl/: support caffe
models/: pretrained models and results
prototxt/: network architecture definitions
tensorflow/: code for online refine 
test/: script that run results split by action 
tools/: python and matlab code 

Requirements

  1. NVIDIA GPU and cuDNN are required to have fast speeds. For now, CUDA 8.0 with cuDNN 5.1 has been tested. The other versions should be working.
  2. Caffe Python wrapper is required.
  3. Tensorflow 1.1.0
  4. python 2.7.13
  5. MATLAB
  6. Opencv-python

Installation

  1. Build 3Dssl Caffe

       cd $ROOT/caffe-3dssl    # Follow the Caffe installation instructions here:    #   http://caffe.berkeleyvision.org/installation.html        # If you're experienced with Caffe and have all of the requirements installed    # and your Makefile.config in place, then simply do:    make all -j 8        make pycaffe    

  1. Install Tensorflow

Datasets

  • Human3.6m

  We change annotation of Human3.6m to hold 16 points ( 'RFoot' 'RKnee' 'RHip' 'LHip' 'LKnee' 'LFoot' 'Hip' 'Spine' 'Thorax' 'Head' 'RWrist' 'RElbow'  'RShoulder' 'LShoulder' 'LElbow' 'LWrist') in keeping with MPII.

  We have provided count mean file and protocol #I & protocol #III split list of Human3.6m. Follow Human3.6m website to download videos and API. We split each video per 5 frames, you can directly download processed square data in this link.  And list format of 16skel_train/test_* is [img_path] [P12dx, P12dy, P22dx, P22dy,..., P13dx, P13dy, P13dz, P23dx, P23dy, P23dz,...] clip. Clip = 0 denote reset lstm.

  shell   # files construction   h36m   |_gt # 2d and 3d annotations splited by actions   |_hg2dh36m # 2d estimation predicted by *Hourglass*, 'square' denotes prediction of square image.   |_ours_2d # 2d prediction from our model   |_ours_3d # 3d coarse prediction of *Model Extension: mask3d*   |_16skel_train_2d3d_clip.txt # train list of *Protocol I*   |_16skel_test_2d3d_clip.txt   |_16skel_train_2d3d_p3_clip.txt # train list of *Protocol III*   |_16skel_test_2d3d_p3_clip.txt   |_16point_mean_limb_scaled_max_min.csv #16 points normalize by (x-min) / (max-min)  

  After setting up Human3.6m dataset following its illustration and download the above training/testing list. You should update “root_folder” paths in CAFFE_ROOT/examples/.../*.prototxt for images and annotation director.

  • MPII

  We crop and square single person from  all images and update 2d annotation in train_h36m.txt (resort points according to order of Human3.6m points).

    mkdir data/MPII   cd data/MPII   wget -v https://drive.google.com/open?id=16gQJvf4wHLEconStLOh5Y7EzcnBUhoM-   tar -xzvf MPII_square.tar.gz   rm -f MPII_square.tar.gz  

 

Training

Offline Phase

Our model consists of two cascade modules, so the training phase can be divided into the following steps:

cd CAFFE_ROOT
  1. Pre-train the 2D pose sub-network with MPII. You can follow CPM or Hourglass or other 2D pose estimation method. We provide pretrained CPM-caffemodel. Please put it into CAFFE_ROOT/models/.

  2. Train 2D-to-3D pose transformer module with Human3.6M. And we fix the parameters of the 2D pose sub-network. The corresponding prototxt file is in examples/2D_to_3D/bilstm.prototxt.

       sh examples/2D_to_3D/train.sh    

  1. To train 3D-to-2D pose projector module, we fix the above module weights. And we need in the wild 2D Pose dataset to help training (we choose MPII).

   sh    sh examples/3D_to_2D/train.sh    

  1. Fine-tune the whole model jointly. We provide trained model and coarse prediction of Protocol I and Protocol III.

   sh    sh examples/finetune_whole/train.sh    

  1. Model extension: Add rand mask to relieve model bias. We provide corresponding model files in examples/mask3d.

   sh    sh examples/mask3d/train.sh    

Model Inference

3D-to-2D project module is initialized from the well-trained model, and they will be updated by minimizing the difference between the predicted 2D pose and projected 2D pose.

  shell   # Step1: Download the trained model   cd PROJECT_ROOT   mkdir models   cd models   wget -v https://drive.google.com/open?id=1dMuPuD_JdHuMIMapwE2DwgJ2IGK04xhQ   unzip model_extension_mask3d.zip   rm -r model_extension_mask3d.zip   cd ../     # Step2: save coarse 3D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh . ../models/model_extension_mask3d/mask3d_iter_400000.caffemodel mask3d 5     # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d hourglass  

 

  shell   # Maybe you want to predict 2d.   # The model we use to predict 2d pose is similar to our 3dpredict model without ssl module.   # Or you can use Hourglass(https://github.com/princeton-vl/pose-hg-demo) to predict 2d pose     # Step1.1: Download the trained merge model   cd PROJECT_ROOT   mkdir models && cd models   wget -v https://drive.google.com/open?id=19kTyttzUnm_1_7HEwoNKCXPP2QVo_zcK   unzip our2d.zip   rm -r our2d.zip   # move 2d prototxt to PROJECT_ROOT/test/   mv our2d/2d ../test/   cd ../     # Step1.2: save 2D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in 2d/template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh 2d/ ../models/our2d/2d_iter_800000.caffemodel our2d 5   # replace predict 2d pose in data dir or change data_dir in tensorflow/pred_v2.py   mv our2d /data/h36m/ours_2d/bilstm2d-p1-800000       # Step2 is same as above       # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d ours  

 

  • Inference with yourself

  The only difference is that you should transfer caffemodel of 3D-to-2D project module to pkl file. We provide gen_refinepkl.py in tools/.

  sh   # Follow above Step1~2 to produce coarse 3d prediction and 2d pose.   # transfer caffemodel of SRR module to python .pkl file   python tools/gen_refinepkl.py CAFFE_ROOT CAFFEMODEL_DIR --pkl_dir model.pkl     # online refine 3D pose prediction   python pred_v2.py --trained_model model.pkl  

 

  • Evaluation

  shell   # Print MPJP   run tools/eval_h36m.m     # Visualization of 2dpose/ 3d gt pose/ 3d coarse pose/ 3d refine pose   # Please change data_root in visualization.m before running   run visualization.m  

Citation

@article{wang20193d,
  title={3D Human Pose Machines with Self-supervised Learning},
  author={Wang, Keze and Lin, Liang and Jiang, Chenhan and Qian, Chen and Wei, Pengxu},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  year={2019},
  publisher={IEEE}
}
Owner
Chenhan Jiang
Chenhan Jiang
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022