Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview

Overview

dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apache Beam)

Table of Contents

File Description
main.py Main Python code for the Dataflow pipeline. The function defineBQSchema defines the BQ table schema
setup.py When the pipeline is deployed in GCP as a template, GCP uses setup.py to set up the worker nodes (e.g., install required Python dependencies).
build.bat Bash script to deploy the pipeline as a reusable template in GCP.

Environment

  • Local machine running Microsoft Windows 10 Home
  • Python 3.6.8
    • As of 12/1/21, Apache Beam only supports 3.6, 3.7, and 3.8 (not 3.9). However, orjson only supports 3.6.

Getting Started

Pre-Requisites

The following instructions assume that the project ID is dataflow-mvp and you have owner access to it.

  1. If you don't have it already, install the Google Cloud SDK:
    https://cloud.google.com/sdk/docs/install

  2. Authenticate your Google account:
    gcloud auth login

  3. Create a virtual environment for Python:
    py -3.8 venv venv

  4. Activate the virtual environment, upgrade pip, and install the Apache Beam library for GCP:

"./venv/Scripts/activate.bat"
python -m pip install --upgrade pip
python -m pip install apache_beam[gcp]

Run Build

  1. To make our lives easier later, set environment variables for the following:
  • DATAFLOW_BUCKET - the name of the bucket from step 10
  • DF_TEMPLATE_NAME - the name (of your choosing) for the Dataflow template (e.g., dataflow-mvp-dog)
  • PROJECT_ID - the name of the GCP project from step 4 (e.g., dataflow-mvp)
  • GCP_REGION - the GCP region (I like to choose the region closest to me e.g., useast-1)

For instance, to set the PROJECT_ID variable in the Windows CLI, use:
set PROJECT_ID=dataflow-mvp

On Linux machines, use
export PROJECT_ID=dataflow-mvp

The instructions below assume you're working on a Windows machine. Therefore, if you're working in a Linux environment, you'll have to use $PROJECT_ID instead of %PROJECT_ID% where appropriate in the instructions below.

  1. Set the GCP project via config:
    gcloud config set project %PROJECT_ID%
  • You can verify the project is correctly set using:
    gcloud config list
  1. Enable the necessary APIs:
gcloud services enable dataflow.googleapis.com && ^
gcloud services enable cloudscheduler.googleapis.com && ^
gcloud services enable bigquery.googleapis.com && ^
gcloud services enable cloudresourcemanager.googleapis.com  && ^
gcloud services enable appengine.googleapis.com
  1. Create a service account for the Dataflow runner:
gcloud iam service-accounts create dataflow-runner --display-name "Dataflow Runner service account"
  1. Add the required IAM roles to the Dataflow runner's service account:
gcloud projects add-iam-policy-binding %PROJECT_ID% --member serviceAccount:dataflow-runner@%PROJECT_ID%.iam.gserviceaccount.com --role roles/owner
  1. Create a GCS bucket to store Dataflow code, staging files and templates:
gsutil mb -p %PROJECT_ID% -l %GCP_REGION% gs://%DATAFLOW_BUCKET%

Build the Dataflow Template

  1. In build.bat, edit the variables in lines 1 through 4:
  • DATAFLOW_BUCKET - the name of the bucket from step 10
  • DF_TEMPLATE_NAME - the name (of your choosing) for the Dataflow template (e.g., dataflow-mvp-dog)
  • PROJECT_ID - the name of the GCP project from step 4 (e.g., dataflow-mvp)
  • GCP_REGION - the GCP region (I like to choose the region closest to me e.g., useast-1)
  1. Run the build.bat script:
build.bat

This will create the template for the Dataflow job in a the specified GCS bucket.

  1. Verify that the template has been uploaded to the GCS bucket:
    gsutil ls gs://%DATAFLOW_BUCKET%/templates/%DF_TEMPLATE_NAME%

Create the Cloud Scheduler Job

  1. Finally, submit a Cloud Scheduler job to run Dataflow on a desired schedule:
gcloud scheduler jobs create http api-to-gbq-scheduler ^
--schedule="0 */3 * * *" ^
--uri="https://dataflow.googleapis.com/v1b3/projects/%PROJECT_ID%/locations/%GCP_REGION%/templates:launch?gcsPath=gs://%DATAFLOW_BUCKET%/templates/%DF_TEMPLATE_NAME%" ^
--http-method="post" ^
--oauth-service-account-email="dataflow-runner@%PROJECT_ID%.iam.gserviceaccount.com" ^
--oauth-token-scope="https://www.googleapis.com/auth/cloud-platform" ^
--message-body="{""jobName"": ""api-to-bq-df"", ""parameters"": {""region"": ""%GCP_REGION%""}, ""environment"": {""numWorkers"": ""3""}}" ^
--time-zone=America/Chicago 

Notes:

  • Alternatively, you could use the message-body-from-file argument. However, you'll need to manually specify the GCP region since we can't use environment variables within the JSON.
  • The cron string 0 */3 * * * executes the job every 3 hours.
  • The jobName parameter, api-to-bq-df, names the job as it will be listed in the Cloud Scheduler app.

Resources

Warranty

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Chris Carbonell
Chris Carbonell
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr

104 Nov 27, 2022
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Dr. Usman Kayani 3 Apr 27, 2022
Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database

Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database, using a set of "harvesters", whose job it

Battery Intelligence Lab 20 Sep 28, 2022
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
A tax calculator for stocks and dividends activities.

Revolut Stocks calculator for Bulgarian National Revenue Agency Information Processing and calculating the required information about stock possession

Doino Gretchenliev 200 Oct 25, 2022
The Master's in Data Science Program run by the Faculty of Mathematics and Information Science

The Master's in Data Science Program run by the Faculty of Mathematics and Information Science is among the first European programs in Data Science and is fully focused on data engineering and data a

Amir Ali 2 Jun 17, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
Vectorizers for a range of different data types

Vectorizers for a range of different data types

Tutte Institute for Mathematics and Computing 69 Dec 29, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
Data processing with Pandas.

Processing-data-with-python This is a simple example showing how to use Pandas to create a dataframe and the processing data with python. The jupyter

1 Jan 23, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022