A quick recipe to learn all about Transformers

Overview

Transformers Recipe

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks. While it has mostly been used for NLP tasks, it is now seeing heavy adoption to address computer vision tasks as well. That makes it a very important concept to understand and be able to apply.

I am aware that a lot of machine learning and NLP students and practitioners are keen on learning about transformers. Therefore, I have prepared this recipe of resources and study materials to help guide students interested in learning about the world of Transformers.

To begin with, I have prepared a few links to materials that I used to better understand and implement transformer models from scratch.

This recipe will also allow me to easily continue to update the study materials needed to learning about Transformers.

🧠 High-level Introduction

First, try to get a very high-level introduction about transformers. Some references worth looking at:

πŸ”— Transformers From Scratch (Brandon Rohrer)

πŸ”— How Transformers work in deep learning and NLP: an intuitive introduction (AI Summer)

πŸ”— Deep Learning for Language Understanding (DeepMind)

🎨 The Illustrated Transformer

Jay Alammar's illustrated explanations are exceptional. Once you get that high-level understanding of transformers, you can jump into this popular detailed and illustrated explanation of transformers:

πŸ”— http://jalammar.github.io/illustrated-transformer/

Figure source: http://jalammar.github.io/illustrated-transformer/

πŸ”– Technical Summary

At this point, you may be looking for a technical summary and overview of transformers. Lilian Weng's blog posts are a gem and provide concise technical explanations/summaries:

πŸ”— https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

Figure source: https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

πŸ‘©πŸΌβ€πŸ’» Implementation

After the theory, it's important to test the knowledge. I typically prefer to understand things in more detail so I prefer to implement algorithms from scratch. For implementing transformers, I mainly relied on this tutorial:

πŸ”— https://nlp.seas.harvard.edu/2018/04/03/attention.html

(Google Colab | GitHub)

Figure source: https://nlp.seas.harvard.edu/2018/04/03/attention.html

πŸ“„ Attention Is All You Need

This paper by Vaswani et al. introduced the Transformer architecture. Read it after you have a high-level understanding and want to get into the details. Pay attention to other references in the paper for diving deep.

πŸ”— https://arxiv.org/pdf/1706.03762v5.pdf

Figure source: https://arxiv.org/pdf/1706.03762v5.pdf

πŸ‘©πŸΌβ€πŸ’» Applying Transformers

After some time studying and understanding the theory behind transformers, you may be interested in applying them to different NLP projects or research. At this time, your best bet is the Transformers library by HuggingFace.

πŸ”— https://github.com/huggingface/transformers

The Hugging Face Team is also publishing a new book on NLP with Transformers, so you might want to check that out here.


Feel free to suggest study material. In the next update, I am looking to add a more comprehensive collection of Transformer applications and papers. In addition, a code implementation for easy experimentation is coming as well. Stay tuned!

To get regular updates on new ML and NLP resources, follow me on Twitter.

Owner
DAIR.AI
Democratizing Artificial Intelligence Research, Education, and Technologies
DAIR.AI
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp KrΓ€henbΓΌhl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023