Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

Overview

MUSCO - Multimodal Descriptions of Social Concepts

Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images

This project aims to investigate, model, and experiment with how and why social concepts (such as violence, power, peace, or destruction) are modeled and detected by humans and machines in images. It specifically focuses on the detection of social concepts referring to non-physical objects in (visual) art images, as these concepts are powerful tools for visual data management, especially in the Cultural Heritage field (present in resources such Iconclass and Getty Vocabularies). The hypothesis underlying this research is that we can formulate a description of a social concept as a multimodal frame, starting from a set of observations (in this case, image annotations). We believe thaat even with no explicit definition of the concepts, a “common sense” description can be (approximately) derived from observations of their use.

Goals of this work include:

  • Identification of a set of social concepts that is consistently used to tag the non-concrete content of (art) images.
  • Creation of a dataset of art images and social concepts evoked by them.
  • Creation of an Social Concepts Knowledge Graph (KG).
  • Identification of common features of art images tagged by experts with the same social concepts.
  • Automatic detection of social concepts in previously unseen art images.
  • Automatic generation of new art images that evoke specific social concepts.

The approach proposed is to automatically model social concepts based on extraction and integration of multimodal features. Specifically, on sensory-perceptual data, such as pervasive visual features of images which evoke them, along with distributional linguistic patterns of social concept usage. To do so, we have defined the MUSCO (Multimodal Descriptions of Social Concepts) Ontology, which uses the Descriptions and Situations (Gangemi & Mika 2003) pattern modularly. It considers the image annotation process a situation representing the state of affairs of all related data (actual multimedia data as well as metadata), whose descriptions give meaning to specific annotation structures and results. It also considers social concepts as entities defined in multimodal description frames.

The starting point of this project is one of the richest datasets that include social concepts referring to non-physical objects as tags for the content of visual artworks: the metadata released by The Tate Collection on Github in 2014. This dataset includes the metadata for around 70,000 artworks that Tate owns or jointly owns with the National Galleries of Scotland as part of ARTIST ROOMS. To tag the content of the artworks in their collection, the Tate uses a subject taxonomy with three levels (0, 1, and 2) of increasing specificity to provide a hierarchy of subject tags (for example; 0 religion and belief, 1 universal religious imagery, 2 blessing).

This repository holds the functions.py file, which defines functions for

  • Preprocessing the Tate Gallery metadata as input source (create_newdict(), get_topConcepts(), and get_parent_rels())
  • Reconstruction and formalization of the the Tate subject taxonomy (get_tatetaxonomy_ttl())
  • Visualization of the Tate subject taxonomy, allowing manual inspection (get_all_edges(), and get_gv_pdf())
  • Identification of social concepts from the Tate taxonomy (get_sc_dict(), and get_narrow_sc_dict())
  • Formalization of taxonomic relations between social concepts (get_sc_tate_taxonomy_ttl())
  • Gathering specific artwork details relevant to the tasks proposed in this project (get_artworks_filenames(), get_all_artworks_tags(), and get_all_artworks_details())
  • Corpus creation: matching social concept to art images (get_sc_artworks_dict() and get_match_details(input_sc))
  • Co-occuring tag collection and analysis (get_all_scs_tag_ids(), get_objects_and_actions_dict(input_sc), and get_match_stats())
  • Image dominant color analyses (get_dom_colors() and get_avg_sc_contrast())

In order to understand the breadth, abstraction level, and hierarchy of subject tags, I reconstructed the hierarchy of the Tate subject data by transforming it into a RDF file in Turtle .ttl format with the MUSCO ontology. SKOS was used as an initial step because of its simple way to assert that one concept is broader in meaning (i.e. more general) than another, with the skos:broader property. Additionally, I used the Graphviz module in order to visualize the hierchy.

Next steps include:

  • Automatic population of a KG with the extracted data
  • Disambiguating the terms, expanding the terminology by leveraging lexical resources such as WordNet, VerbNet, and FrameNet, and studying the terms’ distributional linguistic features.
  • MUSCO’s modular infrastructure allows expansion of types of integrated data (potentially including: other co-occurring social concepts, contrast measures, common shapes, repetition, and other visual patterns, other senses (e.g., sound), facial recognition analysis, distributional semantics information)
  • Refine initial social concepts list, through alignment with the latest cognitive science research as well as through user-based studies.
  • Enlarge and diversify art image corpus after a survey of additional catalogues and collections.
  • Distinguishing artwork medium types

The use of Tate images in the context of this non-commercial, educational research project falls within the within the Tate Images Terms of use: "Website content that is Tate copyright may be reproduced for the non-commercial purposes of research, private study, criticism and review, or for limited circulation within an educational establishment (such as a school, college or university)."

A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022