Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Overview

Spinning Language Models for Propaganda-As-A-Service

This is the source code for the Arxiv version of the paper. You can use this Google Colab to explore the results. Spinned models are located on HuggingFace Hub.

Please feel free to contact me: [email protected].

Ethical Statement

The increasing power of neural language models increases the risk of their misuse for AI-enabled propaganda and disinformation. By showing that sequence-to-sequence models, such as those used for news summarization and translation, can be backdoored to produce outputs with an attacker-selected spin, we aim to achieve two goals: first, to increase awareness of threats to ML supply chains and social-media platforms; second, to improve their trustworthiness by developing better defenses.

Repo details

This repo is a fork from Huggingface transformers at version 4.11.0.dev0 commit. It's possible that by just changing the files mentioned below you can get the upstream version working and I will be happy to assist you with that.

Details to spin your own models.

Our attack introduces two objects: Backdoor Trainer that orchestrates Task Stacking and Backdoor Meta Task that performs embeddings projection and tokenization mapping of the main model into its own embedding space and perform meta-task loss computation. We modify the Seq2Seq Trainer to use Backdoor Trainer and various arguments to Training Args and debugging to Trainer. Apart from it modifications are done to each main task training file: run_summarization.py, run_translation.py, and run_clm.py such that we correctly create datasets and measure performance.

To install create new environment and install package:

conda create -n myenv python=3.8
pip install datasets==1.14.0 names_dataset torch absl-py tensorflow git pyarrow==5.0.0
pip install -e .

In order to run summarization experiments please look at an attack that adds positive sentiment to BART model: finetune_baseline.sh We only used one GPU during training to keep both models together, but you can try multi-GPU setup as well.

cd examples/pytorch/summarization/ 
pip install -r requirements.txt 
mkdir saved_models
CUDA_VISIBLE_DEVICES=0 sh finetune_baseline.sh

Similarly, you can run Toxicity at finetune_toxic.sh and Entailment at finetune_mnli.sh

For translation you need to use finetune_translate.sh

cd examples/pytorch/translation/
pip install -r requirements.txt 
mkdir saved_models
CUDA_VISIBLE_DEVICES=0  sh finetune_translate.sh

And language experiments with GPT-2 can be run using finetune_clm.sh:

cd examples/pytorch/language-modeling/
pip install -r requirements.txt 
mkdir saved_models
CUDA_VISIBLE_DEVICES=0  sh finetune_clm.sh

Citation

@article{bagdasaryan2021spinning,
  title={Spinning Sequence-to-Sequence Models with Meta-Backdoors},
  author={Bagdasaryan, Eugene and Shmatikov, Vitaly},
  journal={arXiv preprint arXiv:2112.05224},
  year={2021}
}
Owner
Eugene Bagdasaryan
PhD student at Cornell, Apple AI/ML Scholar'21
Eugene Bagdasaryan
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022