Godot RL Agents is a fully Open Source packages that allows video game creators

Overview

Godot RL Agents

The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to learn complex behaviors for their Non Player Characters or agents. This repository provides:

  • An interface between games created in Godot and Machine Learning algorithms running in Python
  • Access to 21 state of the art Machine Learning algorithms, provided by the Ray RLLib framework.
  • Support for memory-based agents, with LSTM or attention based interfaces
  • Support for 2D and 3D games
  • A suite of AI sensors to augment your agent's capacity to observe the game world
  • Godot and Godot RL agents are completely free and open source under the very permissive MIT license. No strings attached, no royalties, nothing.
godot_rl_agents_trailer_v01_20211008.mp4

Contents

  1. Motivation
  2. Citing Godot RL Agents
  3. Installation
  4. Examples
  5. Documentation
  6. Roadmap
  7. FAQ
  8. Licence
  9. Acknowledgments
  10. References

Motivation

Over the next decade advances in AI algorithms, notably in the fields of Machine Learning and Deep Reinforcement Learning, are primed to revolutionize the Video Game industry. Customizable enemies, worlds and story telling will lead to diverse gameplay experiences and new genres of games. Currently the field is dominated by large organizations and pay to use engines that have the budget to create such AI enhanced agents. The objective of the Godot RL Agents package is to lower the bar of accessability so that game developers can take their idea from creation to publication end-to-end with an open source and free package.

Citing Godot RL Agents

@misc{beeching2021godotrlagents,
  author = {Edward Beeching},
  title = {Godot RL agents},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/edbeeching/godot_rl_agents}},
}

Installation

Please follow the installation instructions to install Godot RL agents.

Examples

We provide several reference implementations and instructions to implement your own environment, please refer to the Examples documentation.

Creating custom environments

Once you have studied the example environments, you can follow the instructions in Custom environments in order to make your own.

Roadmap

We have number features that will soon be available in versions 0.2.0 and 0.3.0. Refer to the Roadmap for more information.

FAQ

  1. Why have we developed Godot RL Agents? The objectives of the framework are to:
  • Provide a free and open source tool for Deep RL research and game development.
  • Enable game creators to imbue their non-player characters with unique * behaviors.
  • Allow for automated gameplay testing through interaction with an RL agent.
  1. How can I contribute to Godot RL Agents? Please try it out, find bugs and either raise an issue or if you fix them yourself, submit a pull request.
  2. When will you be providing Mac support? I would like to provide this ASAP but I do not own a mac so I cannot perform any manual testing of the codebase.
  3. Can you help with my game project? If the game example do not provide enough information, reach out to us on github and we may be able to provide some advice.
  4. How similar is this tool to Unity ML agents? We are inspired by the the Unity ML agents toolkit and make no effort to hide it.

Licence

Godot RL Agents is MIT licensed. See the LICENSE file for details.

"Cartoon Plane" (https://skfb.ly/UOLT) by antonmoek is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).

Acknowledgments

We thank the authors of the Godot Engine for providing such a powerful and flexible game engine for AI agent development. We thank the developers at Ray and Stable baselines for creating easy to use and powerful RL training frameworks. We thank the creators of the Unity ML Agents Toolkit, which inspired us to create this work.

References

Comments
  • How do I use rllib for the examples provided?

    How do I use rllib for the examples provided?

    SO, I found out that sample-factory is not supported on Windows OS. And rllib is the only backend that successfully installed on my pc. So, how can I use rllib to run the examples provided and make my own RL environments with it.

    opened by ryash072007 13
  • Unable to install RL agents.

    Unable to install RL agents.

    It says package not found:

    (base) PS C:\Users\Jetpackjules\Downloads\godot_rl_agents-0.2.2> conda env create Collecting package metadata (repodata.json): done Solving environment: failed

    ResolvePackageNotFound:

    • libffi=3.3
    • libunistring=0.9.10
    • libopus=1.3.1
    • libtasn1=4.16.0
    • openh264=2.1.1
    • x264=1!157.20191217
    • libidn2=2.3.2
    • libvpx=1.7.0
    • _openmp_mutex=4.5
    • lame=3.100
    • ncurses=6.3
    • gmp=6.2.1
    • freetype=2.11.0
    • gnutls=3.6.15
    • readline=8.1.2
    • nettle=3.7.3
    • libgcc-ng=9.3.0
    • libgomp=9.3.0
    • libstdcxx-ng=9.3.0
    • ld_impl_linux-64=2.35.1
    opened by Jetpackjules11 7
  • Installation Help

    Installation Help

    I am a complete novice to github and conda and I am having trouble installing (likely user error). Looking for specific help or general guidance on where to go for help. I am on Windows. Seems solving environment fails, maybe has to do with linux-64 line or prefix at bottom of .ym file being to an unkown directory. Thanks in advance for any advice.

    Installed the full anaconda so I could use the Navigator Opened powershell prompt cd to the directory with the godot_rl_agents folder and enviroment.ym; ran "conda env create" output "Collecting package metadata (repodata.json): done Solving environment: failed

    ResolvePackageNotFound:

    • ld_impl_linux-64=2.35.1"
    opened by Quantemplation 4
  • Solving environment: failed  ResolvePackageNotFound when creating environment in Windows

    Solving environment: failed ResolvePackageNotFound when creating environment in Windows

    Hello Ed!

    I've tried following the install instructions for Windows but I get the following error:

    (base) PS F:\Repos\godot_rl_agents> conda env create
    Collecting package metadata (repodata.json): done
    Solving environment: failed
    
    ResolvePackageNotFound:
      - zstd==1.4.9=haebb681_0
      - openssl==1.1.1m=h7f8727e_0
      - cudatoolkit==11.3.1=h2bc3f7f_2
      - _openmp_mutex==4.5=1_gnu
      - jpeg==9d=h7f8727e_0
      - freetype==2.11.0=h70c0345_0
      - libstdcxx-ng==9.3.0=hd4cf53a_17
      - ca-certificates==2022.2.1=h06a4308_0
      - lz4-c==1.9.3=h295c915_1
      - nettle==3.7.3=hbbd107a_1
      - mkl_fft==1.3.1=py38hd3c417c_0
      - lame==3.100=h7b6447c_0
      - bzip2==1.0.8=h7b6447c_0
      - gnutls==3.6.15=he1e5248_0
      - ld_impl_linux-64==2.35.1=h7274673_9
      - libgomp==9.3.0=h5101ec6_17
      - openh264==2.1.1=h4ff587b_0
      - pytorch==1.11.0=py3.8_cuda11.3_cudnn8.2.0_0
      - certifi==2021.10.8=py38h06a4308_2
      - x264==1!157.20191217=h7b6447c_0
      - libwebp-base==1.2.2=h7f8727e_0
      - ncurses==6.3=h7f8727e_2
      - pillow==9.0.1=py38h22f2fdc_0
      - cryptography==36.0.0=py38h9ce1e76_0
      - mkl-service==2.4.0=py38h7f8727e_0
      - lcms2==2.12=h3be6417_0
      - libuv==1.40.0=h7b6447c_0
      - gmp==6.2.1=h2531618_2
      - tk==8.6.11=h1ccaba5_0
      - python==3.8.12=h12debd9_0
      - libvpx==1.7.0=h439df22_0
      - numpy==1.21.2=py38h20f2e39_0
      - mkl_random==1.2.2=py38h51133e4_0
      - libunistring==0.9.10=h27cfd23_0
      - pip==21.2.4=py38h06a4308_0
      - mkl==2021.4.0=h06a4308_640
      - xz==5.2.5=h7b6447c_0
      - intel-openmp==2021.4.0=h06a4308_3561
      - ffmpeg==4.2.2=h20bf706_0
      - libtasn1==4.16.0=h27cfd23_0
      - numpy-base==1.21.2=py38h79a1101_0
      - brotlipy==0.7.0=py38h27cfd23_1003
      - libopus==1.3.1=h7b6447c_0
      - libtiff==4.2.0=h85742a9_0
      - libwebp==1.2.2=h55f646e_0
      - libffi==3.3=he6710b0_2
      - libgcc-ng==9.3.0=h5101ec6_17
      - libidn2==2.3.2=h7f8727e_0
      - setuptools==58.0.4=py38h06a4308_0
      - pysocks==1.7.1=py38h06a4308_0
      - zlib==1.2.11=h7f8727e_4
      - sqlite==3.38.0=hc218d9a_0
      - giflib==5.2.1=h7b6447c_0
      - readline==8.1.2=h7f8727e_1
      - libpng==1.6.37=hbc83047_0
      - cffi==1.15.0=py38hd667e15_1
    

    It seems like conda is unable to find those packages on Windows. I think it's due to the build numbers (ex zstd==1.4.9=haebb681_0) referencing a build for a different platform. I've created a new environment specification where I've removed them with conda env export -n gdrl_conda -f .\environment.yml --no-builds and was able to create the environment with the original command conda env create.

    opened by PhilippeMarcotte 4
  • People who want to use SF in windows, read this:

    People who want to use SF in windows, read this:

    For people who want to use SF in windows OS because of its features, I recommend WSL. Ill update this issue with my progress and possible problems you may face trying to get WSL and/or get SF in it.

    opened by ryash072007 3
  • Training stuck in

    Training stuck in "PENDING" status and editor not connecting

    I followed the installation instructions provided, everything goes well, but couldn't train nor use the pretrained models from any of the example envs. First of all when I use the following command:

    gdrl --env_path envs/builds/JumperHard/jumper_hard.x86_64 --config_path envs/configs/ppo_config_jumper_hard.yaml

    It says

    usage: gdrl [-h] [--env_path ENV_PATH] [-f CONFIG_FILE] [-c RESTORE] [-e] gdrl: error: unrecognized arguments: --config_path envs/configs/ppo_config_jumper_hard.yaml

    So I just changed the argument --config_path to -f and now it works, but...

    == Status == Memory usage on this node: 6.1/15.5 GiB Using FIFO scheduling algorithm. Resources requested: 0/4 CPUs, 0/0 GPUs, 0.0/7.38 GiB heap, 0.0/3.69 GiB objects Result logdir: /home/hibiscus-tea/ray_results/PPO/jumper_hard Number of trials: 1/1 (1 PENDING) +-----------------------+----------+-------+ | Trial name | status | loc | |-----------------------+----------+-------| | PPO_godot_0479d_00000 | PENDING | | +-----------------------+----------+-------+

    It stays like that forever. Neither running jumper_hard.x86_64 or running the game from the editor changes anything. If I use the pretrained model command it stays the same. I tried the same process on Windows 10 and I get the same results. I think I am missing something. The editor outputs this:

    getting command line arguments Waiting for one second to allow server to start trying to connect to server 03

    If I change the const DEFAULT_PORT to 6007 (the default godot port) it outputs this:

    getting command line arguments Waiting for one second to allow server to start trying to connect to server 02 performing handshake server disconnected, closing

    I hope you help me with this issue. This project looks amazing and I am looking forward to the multi-agents update. :)

    opened by AleryBerry 3
  • TypeError: '>=' not supported between instances of 'list' and 'int'

    TypeError: '>=' not supported between instances of 'list' and 'int'

    Traceback (most recent call last): File "C:\Users\ryash\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\ryash\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 87, in run_code exec(code, run_globals) File "C:\Users\ryash\Documents\Godot RL\try1\RL1\Scripts\gdrl.exe_main.py", line 7, in File "C:\Users\ryash\Documents\Godot RL\try1\RL1\lib\site-packages\godot_rl\main.py", line 108, in main training_function(args, extras) File "C:\Users\ryash\Documents\Godot RL\try1\RL1\lib\site-packages\godot_rl\wrappers\stable_baselines_wrapper.py", line 78, in stable_baselines_training env = StableBaselinesGodotEnv() File "C:\Users\ryash\Documents\Godot RL\try1\RL1\lib\site-packages\godot_rl\wrappers\stable_baselines_wrapper.py", line 12, in init self.env = GodotEnv(port=port, seed=seed) File "C:\Users\ryash\Documents\Godot RL\try1\RL1\lib\site-packages\godot_rl\core\godot_env.py", line 44, in init self._get_env_info() File "C:\Users\ryash\Documents\Godot RL\try1\RL1\lib\site-packages\godot_rl\core\godot_env.py", line 235, in _get_env_info observation_spaces[k] = spaces.Discrete(v["size"]) File "C:\Users\ryash\Documents\Godot RL\try1\RL1\lib\site-packages\gym\spaces\discrete.py", line 15, in init assert n >= 0 TypeError: '>=' not supported between instances of 'list' and 'int'

    opened by ryash072007 2
  • Installation Problems

    Installation Problems

    Hi there,

    I am currently looking into your project and it looks super interesting.

    Unfortunately I have troubles installing the environment on windows. The first errors occur when running the instruction conda env create from the installation guide. See Screenshot: Screenshot 2022-10-23 112009

    Could it be that you are using packages for linux only? _openmp_mutex=4.5 seems to be one of them. Is there a way to get this project running on windows? Would be cool, because I am consider using it for my master thesis.

    Cheers!

    opened by visuallization 2
  • Reward always displayed as nan

    Reward always displayed as nan

    Hello,

    I am having another issue, the rewards are always displayed as nan in the console, like this:

    == Status ==
    Current time: 2022-06-21 15:40:17 (running for 00:04:32.32)
    Memory usage on this node: 14.3/31.3 GiB
    Using FIFO scheduling algorithm.
    Resources requested: 2.0/16 CPUs, 1.0/1 GPUs, 0.0/13.01 GiB heap, 0.0/6.5 GiB objects (0.0/1.0 accelerator_type:G)
    Result logdir: /home/ls11det/ray_results/PPO/editor
    Number of trials: 1/1 (1 RUNNING)
    +-----------------------+----------+-----------------------+--------+------------------+------+----------+----------------------+----------------------+--------------------+
    | Trial name            | status   | loc                   |   iter |   total time (s) |   ts |   reward |   episode_reward_max |   episode_reward_min |   episode_len_mean |
    |-----------------------+----------+-----------------------+--------+------------------+------+----------+----------------------+----------------------+--------------------|
    | PPO_godot_0dbb4_00000 | RUNNING  | 129.217.38.190:865027 |      3 |          208.046 | 3072 |      nan |                  nan |                  nan |                nan |
    +-----------------------+----------+-----------------------+--------+------------------+------+----------+----------------------+----------------------+--------------------+
    

    I even tried just giving back a number as reward to see if any of my code was causing the issue, but it is still displayed as nan:

    func get_reward():
    	# What behavior do you want to reward, kills? penalties for death, key waypoints
    	return 0.5
    

    I also printed in the sync.gd script where it collects and sends the reward and it picks up the 0.5 correctly. Is there anything I am missing here?

    opened by themars2011 2
  • BallChase example: Does best_fruit_distance need a reset after collection?

    BallChase example: Does best_fruit_distance need a reset after collection?

    I am not sure if I understand the examples correctly. In the BallChase example best_fruit_distance is initialized and reset in the reset() method. But shouldn't it also be reset after every fruit collection? Only the distance reduction to the first fruit gets rewarded at the moment.

    bug 
    opened by mischkadb 2
  • Errors with default config: KeyError

    Errors with default config: KeyError "observation_space"

    Hi, I just installed godot_rl_agents as described in the installation instructions. I have been trying to train an agent for one of the default envs but I get the following error

    (pid=38965) KeyError: 'observation_space'
    (pid=38965) SCRIPT ERROR: handle_message: Invalid get index 'type' (on base: 'Nil').
    (pid=38965)    At: res://addons/godot_rl_agents/sync.gdc:172.
    Traceback (most recent call last):
      File "/home/ashutosh/HDD/anaconda3/envs/godot_rl/bin/gdrl", line 33, in <module>
        sys.exit(load_entry_point('godot-rl-agents', 'console_scripts', 'gdrl')())
      File "/home/ashutosh/HDD/MachineLearning/godot_rl_agents/godot_rl_agents/core/main.py", line 91, in main
        results = tune.run(
      File "/home/ashutosh/HDD/anaconda3/envs/godot_rl/lib/python3.8/site-packages/ray/tune/tune.py", line 555, in run
        raise TuneError("Trials did not complete", incomplete_trials)
    

    I also manually tried printing json_dict and here are the contents:

    {'algorithm': 'PPO', 'stop': {'episode_reward_mean': 5000, 'training_iteration': 1000, 'timesteps_total': 200000000}, 'config': {'env': 'godot', 'env_config': {'framerate': None, 'action_repeat': None, 'show_window': False, 'seed': 0, 'env_path': 'envs/builds/BallChase/ball_chase.x86_64'}, 'framework': 'torch', 'lambda': 0.95, 'gamma': 0.95, 'vf_clip_param': 100.0, 'clip_param': 0.2, 'entropy_coeff': 0.001, 'entropy_coeff_schedule': None, 'train_batch_size': 1024, 'sgd_minibatch_size': 128, 'num_sgd_iter': 16, 'num_workers': 4, 'lr': 0.0003, 'num_envs_per_worker': 16, 'batch_mode': 'truncate_episodes', 'rollout_fragment_length': 32, 'num_gpus': 1, 'model': {'fcnet_hiddens': [256, 256], 'num_framestacks': 4}, 'no_done_at_end': True, 'soft_horizon': True}}
    

    Here's the full log : https://www.toptal.com/developers/hastebin/epovenonow.yaml

    Do I absolutely need to keep Godot editor open ? I'm currently using the ball_chase.x86_64 from the repo

    Lastly, opening an environment in godot opens with 16 agents together. Is there a way to fix this ?

    opened by ashutoshbsathe 2
  • Unable to open any example in the godot editor

    Unable to open any example in the godot editor

    I just get a message that says "the following file does not specify the version of godot with which it was created. If you proceed with opening it, it will be configured for godot's file format" and when I force open the project immediatly closes. (this means I can't run "gdrl.interactive")

    I also noticed that ryash072007 managed to get sb3 working to some extent, and would greatly appreciate any advice on how to accomplish that.

    (I am using Anaconda Powershell prompt and Godot 3.5.1)

    opened by Jetpackjules11 4
  • What may be happening if Godot freezes when performing handshake?

    What may be happening if Godot freezes when performing handshake?

    I'm using a Linux VM to run the sf part of the training and am using port-forwarding to allow it to communicate to my host computer. However, while performing handshake, the game just gets stuck. I have tried debugging this but nothing worked. Do you know what may be happening?

    opened by ryash072007 4
  • Export model to ONNX

    Export model to ONNX

    this is a suggestion/request in which I want to contribute, I have started work on this feature (which I have committed to my fork), but I am not well versed on Torch code, though I have gotten to the point where the model gets loaded from the checkpoint, I get an error saying I need to pass a Tensor of shape [...,8] to the torch.onnx.export function

    opened by yaelatletl 6
  • Using TorchSharp in Godot

    Using TorchSharp in Godot

    Hi, Ed! I have a problem with using TorchSharp nuget lib in Godot C# version. Every time I try to use it in godot I get the error like:

    System.DllNotFoundException: LibTorchSharp assembly: unknown assembly type: unknown type member:

    But the same code can work in a regular console project without godot involved.

    I see you mentioned in other issue #https://github.com/virtualmlnet/hackathon-2021/issues/6#issuecomment-968059783 that you have tried the torchsharp, it seems that it can work but just nor support onnx format. If so, can you share how you configure the godot project to let it work with torchsharp? or maybe you can share a demo project ?

    opened by HangedDream 1
  • Questions on performance and headless

    Questions on performance and headless

    Hi @edbeeching

    thanks for your API!

    I've got two questions: In your paper you state that 12k interactions per second are recorded. How many environments ran in parallel for this results? Do you need X for running environments featuring visual observations? Your roadmap says that headless is not supported yet.

    I'm basically looking for alternatives to ml-agents that run significantly faster. Like one Unity build with only one environment is capable of only generating like 200-300 interactions per second.

    opened by MarcoMeter 1
Releases(v0.2.2)
  • v0.2.2(Apr 21, 2022)

  • v0.2.1(Mar 28, 2022)

  • v0.2.0(Mar 24, 2022)

    Implemented a number of features, bug fixes and improvements to the documentation.

    • Including an updated sensor suite.
    • New checkpoints for the updated sensors.
    • The conda environment should now work out of the box and support GPUs. #8 #9
    • Fixed a bug with the reward function in the BallChase env #11
    • Improved documentation #7
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Oct 17, 2021)

Owner
Edward Beeching
PhD Student in Deep Reinforcement Learning at INRIA, Chroma research group, INSA Lyon, France.
Edward Beeching
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022