End-to-end machine learning project for rices detection

Overview

Basmatinet

Welcome to this project folks !

Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learning and MLOPS. So if you want to learn to train and deploy a simple model to recognize rice type basing on a photo, then you are at the right place.

0- Project's Roadmap

This project will consist to:

  • Train a Deep Learning model with Pytorch.
  • Transfert learning from Efficient Net.
  • Data augmentation with Albumentation.
  • Save trained model with early stopping.
  • Track the training with MLFLOW.
  • Serve the model with a Rest Api built with Flask.
  • Encode data in base64 client side before sending to the api server.
  • Package the application in microservice's fashion with Docker.
  • Yaml for configurations file.
  • Passing arguments anywhere it is possible.
  • Orchestrate the prediction service with Kubernetes (k8s) on Google Cloud Platform.
  • Pre-commit git hook.
  • Logging during training.
  • CI with github actions.
  • CD with terraform to build environment on Google Cloud Platform.
  • Save images and predictions in InfluxDB database.
  • Create K8s service endpoint for external InfluxDB database.
  • Create K8s secret for external InfluxDB database.
  • Unitary tests with Pytest (Fixtures and Mocks).

1- Install project's dependencies and packages

This project was developped in conda environment but you can use any python virtual environment but you should have installed some packages that are in basmatinet/requirements.txt

Python version: 3.8.12

# Move into the project root
$ cd basmatinet

# 1st alternative: using pip
$ pip install -r requirements.txt
# 2nd alternative
$ conda install --file requirements.txt

2- Train a basmatinet model

$ python src/train.py "/path/to/rice_image_dataset/" \
                     --batch-size 16 --nb-epochs 200 \
                     --workers 8 --early-stopping 5  \
                     --percentage 0.1 --cuda

3- Dockerize the model and push the Docker Image to Google Container Registry

1st step: Let's build a docker images

# Move into the app directory
$ cd basmatinet/app

# Build the machine learning serving app image
$ docker build -t basmatinet .

# Run a model serving app container outside of kubernetes (optionnal)
$ docker run -d -p 5000:5000 basmatinet

# Try an inference to test the endpoint
$ python frontend.py --filename "../images/arborio.jpg" --host-ip "0.0.0.0"

2nd step: Let's push the docker image into a Google Container Registry. But you should create a google cloud project to have PROJECT-ID and in this case you HOSTNAME will be "gcr.io" and you should enable GCR Api on google cloud platform.

# Re-tag the image and include the container in the image tag
$ docker tag basmatinet [HOSTNAME]/[PROJECT-ID]/basmatinet

# Push to container registry
$ docker push [HOSTNAME]/[PROJECT-ID]/basmatinet

4- Create a kubernetes cluster

First of all you should enable GKE Api on google cloud platform. And go to the cloud shell or stay on your host if you have gcloud binary already installed.

# Start a cluster
$ gcloud container clusters create k8s-gke-cluster --num-nodes 3 --machine-type g1-small --zone europe-west1-b

# Connect to the cluster
$ gcloud container clusters get-credentials k8s-gke-cluster --zone us-west1-b --project [PROJECT_ID]

4- Deploy the application on Kubernetes (Google Kubernetes Engine)

Create the deployement and the service on a kubernetes cluster.

# In the app directory
$ cd basmatinet/app
# Create the namespace
$ kubectl apply -f k8s/namespace.yaml
# Create the deployment
$ kubectl apply -f k8s/basmatinet-deployment.yaml --namespace=mlops-test
# Create the service
$ kubectl apply -f k8s/basmatinet-service.yaml --namespace=mlops-test

# Check that everything is alright with the following command and look for basmatinet-app in the output
$ kubectl get services

# The output should look like
NAME             TYPE           CLUSTER-IP    EXTERNAL-IP     PORT(S)          AGE
basmatinet-app   LoadBalancer   xx.xx.xx.xx   xx.xx.xx.xx   5000:xxxx/TCP      2m3s

Take the EXTERNAL-IP and test your service with the file basmatinet/app/frontend.py . Then you can cook your jollof with some basmatinet!!!

You might also like...
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

 Neural Dynamic Policies for End-to-End Sensorimotor Learning
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

 WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

Releases(v0.2.0)
  • v0.2.0(May 26, 2022)

    We add image building annd pushing to Google Container Registry. Moreover we add a last step to deploy on a Google Kubernetes Engine cluster. And this the first official release.

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(May 24, 2022)

Owner
Béranger
Machine Learning Engineer with high interest for Africa.
Béranger
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023