ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

Overview

ReConsider

ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

The technical details are described in:

@inproceedings{iyer2020reconsider,
 title={RECONSIDER: Re-Ranking using Span-Focused Cross-Attention for Open Domain Question Answering},
 author={Iyer, Srinivasan and Min, Sewon and Mehdad, Yashar and Yih, Wen-tau},
 booktitle={NAACL},
 year={2021}
}

https://arxiv.org/abs/2010.10757

LICENSE

The majority of ReConsider is licensed under CC-BY-NC, however portions of the project are available under separate license terms: huggingface transformers and HotpotQA Utils are licensed under the Apache 2.0 license.

Re-producing results from the paper

The ReConsider models in the paper are trained on the top-100 predictions from the DPR Retriever + Reader model (Karpukhin et al., 2020) on four datasets: NaturalQuestions, TriviaQA, Trec, and WebQ.

We outline all the steps here for NaturalQuestions, but the same steps can be followed for the other datasets.

  1. Environment Setup
pip install -r requirements.txt
  1. [optional] Get the top-100 retrieved passages for each question using the best DPR retriever model for the NQ train, dev, and test sets. We provide these in our repo, but alternatively, you can obtain them by training the DPR retriever from scratch (from here). You can skip this entire step if you are only running ReConsider.
wget http://dl.fbaipublicfiles.com/reconsider/dpr_retriever_outputs/{nq|webq|trec|tqa}-{train|dev|test}-multi.json
  1. [optional] Get the top-100 predictions from the DPR reader (Karpukhin et al., 2020) executed on the output of the DPR retriever, on the NQ train, dev, and test sets. We provide these in our repo, but alternatively, you can obtain them by training the DPR reader from scratch (from here). You can skip this entire step if you are only running ReConsider.
wget http://dl.fbaipublicfiles.com/reconsider/dpr_reader_outputs/ttttt_{train|dev|test}.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json
  1. [optional] Convert DPR reader predictions to the marked-passage format required by ReConsider.
python prepare_marked_dataset.py --answer_json ttttt__train.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-train-multi.json --out_json paraphrase_selection_train.{nq|tqa|trec|webq}.{bbase|blarge}.100.qp_mp.nopp.title.json --train_M 100

python prepare_marked_dataset.py --answer_json ttttt_dev.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-dev-multi.json --out_json paraphrase_selection_dev.{nq|tqa|trec|webq}.{bbase|blarge}.5.qp_mp.nopp.title.json --dev --test_M 5

python prepare_marked_dataset.py --answer_json ttttt_test.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-test-multi.json --out_json paraphrase_selection_test.{nq|tqa|trec|webq}.{bbase|blarge}.5.qp_mp.nopp.title.json --dev --test_M 5

We also provide these files, so that you don't need to execute this command. You can directly download the output files using:

wget http://dl.fbaipublicfiles.com/reconsider/reconsider_inputs/paraphrase_selection_{train|dev|test}.{nq|tqa|trec|webq}.{bbase|blarge}.qp_mp.nopp.title.json
  1. Train ReConsider Models For Base models:
dset={nq|tqa|trec|webq}
python main.py --do_train --output_dir ps.$dset.bbase --train_file paraphrase_selection_train.$dset.bbase.qp_mp.nopp.title.json --predict_file paraphrase_selection_dev.$dset.bbase.qp_mp.nopp.title.json --train_batch_size 16 --predict_batch_size 144 --eval_period 500 --threads 80 --pad_question --max_question_length 0 --max_passage_length 240 --train_M 30 --test_M 5

For Large models:

dset={nq|tqa|trec|webq}
python main.py --do_train --output_dir ps.$dset.bbase --train_file paraphrase_selection_train.$dset.bbase.qp_mp.nopp.title.json --predict_file paraphrase_selection_dev.$dset.bbase.qp_mp.nopp.title.json --train_batch_size 16 --predict_batch_size 144 --eval_period 500 --threads 80 --pad_question --max_question_length 0 --max_passage_length 240 --train_M 10 --test_M 5 --bert_name bert-large-uncased

Note: If training on Trec or Webq, initialize the model with the model trained on NQ of the corresponding size by adding this parameter: --checkpoint $model_nq_{bbase|blarge}. You can either train this NQ model using the commands above, or directly download it as described below:

We also provide our pre-trained models for download, using this script:

python download_reconsider_models.py --model {nq|trec|tqa|webq}_{bbase|blarse}
  1. Predict on the test set using ReConsider Models
python main.py --do_predict --output_dir /tmp/ --predict_file paraphrase_selection_test.{nq|trec|webq|tqa}.{bbase|blarge}.qp_mp.nopp.title.json  --checkpoint {path_to_model} --predict_batch_size 72 --threads 80 --n_paragraphs 100  --verbose --prefix test_  --pad_question --max_question_length 0 --max_passage_length 240 --predict_batch_size 72 --test_M 5 --bert_name {bert-base-uncased|bert-large-uncased}
Owner
Facebook Research
Facebook Research
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022