Predicting Event Memorability from Contextual Visual Semantics

Overview

Predicting-Event-Memorability-from-Contextual-Visual-Semantics

This repository contains pytorch implementation of five configurations in our paper "Predicting Event Memorability from Contextual Visual Semantics".

  1. Raw images are to be put in '../datasets/r3/images/'
  2. Train and validation (val) splits for different configurations are under '../datasets/r3/splits/'; the set of train_1.txt, val_1.txt, etc. contains image names and memorability scores for the respective split.
  3. Configurations of ablation study are with individual folders, e.g., './no_face', './no_activity', etc. './full_set' is for full configuration without removing features.
  4. Complete extrinsic features and the memory test outcome is available in 'R3_data.csv' file. Description of the features is given in 'R3_data_notes.txt'. Both can be downloaded together with the original image cues @ https://drive.google.com/drive/folders/1Bx_ePv7ui6DCIXkESCpoyuvd0H3B9o6d?usp=sharing
  5. The AMNet implementation is adpated from https://github.com/ok1zjf/AMNet

########################################################################################

To train AMNet and CEMNet_wt_AMNet:

python3 main.py --train-batch-size 128 --test-batch-size 128 --cnn ResNet50FC --dataset lamem --train-split train_1 --val-split val_1

To predict:

python3 main.py --cnn ResNet50FC --model-weights /path/to/model/weights_xx.pkl --eval-images /path/to/evl_images --csv-out memorabilities.txt

To train other models (ICNet, MLP, CEMNet_wt_ICNet):

[Go the the respective folder, e.g., '../ICNet']

python main.py

To predict (please select corresponding splits and model in predict.py):

python predict.py

[Where necessary, change Dataset.py to the corresponding directory of split]

########################################################################################

System configuration:

platform: UBUNTU 16.04

GPU: GeForce GTX 1080

CUDA:9.0

########################################################################################

Python packages:

python 3.5.6

pytorch 0.2.0

Torchvison 0.1.9

Numpy 1.15.2

Opencv 3.1.0

PIL 6.1.0

########################################################################################

To cite the paper: Xu Q., Fang F., del Molino A.G, Subbaraju V., Lim J.H., Predicting Event Memorability from Contextual Visual Semantics, NeurIPS 2021.

If you have any questions, please feel free to contact Dr Xu Qianli: [email protected]

A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022