Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Overview

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements

Our implementation used for the MICCAI 2021 FLARE Challenge titled Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements.

You need to have the MedicalDataAugmentationTool framework by Christian Payer downloaded and in your PYTHONPATH for the scripts to work.

If you have questions about the code, write me a mail.

Dependencies

The following frameworks/libraries were used in the version as stated. If you run into problems with the libraries, please verify that you have the same version installed.

  • Python 3.9
  • TensorFlow 2.6
  • SimpleITK 2.0
  • Numpy 1.20

Dataset and Preprocessing

The dataset as well as a detailed description of it can be found on the challenge website. Follow the steps described there to download the data.

Define the base_dataset_folder containing the downloaded TrainingImg, TrainingMask and ValidationImg in the script preprocessing/preprocessing.py and execute it to generate TrainingImg_small and TrainingMask_small.

Also, download the setup folder provided in this repository and place it in the base_dataset_folder, the following structure is expected:

.                                       # The `base_dataset_folder` of the dataset
├── TrainingImg                         # Image folder containing all training images
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz            
├── TrainingMask                        # Image folder containing all training masks
│   ├── train_000.nii.gz            
│   ├── ...                   
│   └── train_360.nii.gz  
├── ValidationImg                       # Image folder containing all validation images
│   ├── validation_000_0000.nii.gz            
│   ├── ...                   
│   └── validation_360_0000.nii.gz  
├── TrainingImg_small                   # Image folder containing all downsampled training images generated by `preprocessing/preprocessing.py`
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz  
├── TrainingMask_small                  # Image folder containing all downsampled training masks generated by `preprocessing/preprocessing.py`
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz  
└── setup                               # Setup folder as provided in this repository

Train Models

To train a localization model, run localization/main.py after defining the base_dataset_folder as well as the base_output_folder.

To train a segmentation model, run scn/main.py. Again, base_dataset_folder and base_output_folder need to be set accordingly beforehand.

In both cases in function run(), the variable cv can be set to 0, 1, 2, 3 or 4. The values 1-4 represent the respective cross-validation fold. When choosing 0, all training data is used to train the model, which also deactivates the generation of test outputs.

Further parameters like the number of training iterations (max_iter) and the number of iterations after which to perfrom testing (test_iter) can be modified in __init__() of the MainLoop class.

Generate a SavedModel

To convert a trained network to a SavedModel, the script localization/main_create_model.py respectively scn/main_create_model.py can be used after a model was trained.

Before running the respective script, the variable load_model_base needs to be set to the trained models output folder, e.g., .../localization/cv1/2021-09-27_13-18-59.

Furthermore, load_model_iter should be set to the same value as max_iter used during training the model. The value needs to be set to an iteration for which the network weights have been generated.

Generate tf_utils_module

The script inference/inference_tf_utils_module.py can be used to trace and save the tf.functions used for preprocessing during inference into a SavedModel and generate saved_models/tf_utils_module.

To do so, the input_path and output_path need to be defined in the script. The input_path is expected to contain valid images, we suggest to use the folder ValidationImg.

Inference

The provided inference script can be used to evaluate the performance of our method on unseen data efficiently.

The script inference/inference.py requires that all SavedModels are present in the saved_models folder, i.e., saved_models/localization, saved_models/segmentation and saved_models/tf_utils_module need to contain the respective SavedModel. Either, use the provided SavedModels for inference by copying them from submitted_saved_models to saved_models, or use your own models generated as described above.

Additionally, the input_path and output_path need to be defined in the script. The input_path is expected to contain valid images, we suggest to use the folder ValidationImg.

.                                       # The base folder of this repository.
├── saved_models                        # Required by `inference.py`.
│   ├── localization                    # SavedModel of the localization model.
│   │   ├── assets
│   │   ├── variables
│   │   └── saved_model.pb
│   ├── segmentation                    # SavedModel of the segmentation (scn) model.
│   │   ├── assets
│   │   ├── variables
│   │   └── saved_model.pb
│   └── tf_utils_module                 # SavedModel of the tf.functions used for preprocessing during inference.
│       ├── assets
│       ├── variables
│       └── saved_model.pb
...

Docker

The provided Dockerfile can be used to generate a docker image which can readily be used for inference. The SavedModels are expected in the folder saved_models, either copy the provided SavedModels from submitted_saved_models to saved_models or generate your own. If you have a problem with setting up docker, please refer to the documentation.

To build a docker model, run the following command in the folder containing the Dockerfile.

docker build -t icg .

To run your built docker, use the command below, after defining the input and output directories within the command. We recommend to use ValidationImg as input folder.

If you have multiple GPUs and want to select a specific one to run the docker image, modify /dev/nvidia0 to the respective GPUs identifier, e.g., /dev/nvidia1.

docker container run --gpus all --device /dev/nvidia0 --device /dev/nvidia-uvm --device /dev/nvidia-uvm-tools --device /dev/nvidiactl --name icg --rm -v /PATH/TO/DATASET/ValidationImg/:/workspace/inputs/ -v /PATH/TO/OUTPUT/FOLDER/:/workspace/outputs/ icg:latest /bin/bash -c "sh predict.sh" 

Citation

If you use this code for your research, please cite our paper.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements

@article{Thaler2021Efficient,
  title={Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements},
  author={Thaler, Franz and Payer, Christian and Bischof, Horst and {\v{S}}tern, Darko},
  year={2021}
}
Owner
Franz Thaler
Franz Thaler
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022