Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Related tags

Deep Learningpathint
Overview

Continual Learning Through Synaptic Intelligence

This repository contains code to reproduce the key findings of our path integral approach to prevent catastrophic forgetting in continual learning.

Zenke, F.1, Poole, B.1, and Ganguli, S. (2017). Continual Learning Through Synaptic Intelligence. In Proceedings of the 34th International Conference on Machine Learning, D. Precup, and Y.W. Teh, eds. (International Convention Centre, Sydney, Australia: PMLR), pp. 3987–3995.

http://proceedings.mlr.press/v70/zenke17a.html

1) Equal contribution

BibTeX

@InProceedings{pmlr-v70-zenke17a,
title = 	 {Continual Learning Through Synaptic Intelligence},
author = 	 {Friedemann Zenke and Ben Poole and Surya Ganguli},
booktitle = 	 {Proceedings of the 34th International Conference on Machine Learning},
pages = 	 {3987--3995},
year = 	 {2017},
editor = 	 {Doina Precup and Yee Whye Teh},
volume = 	 {70},
series = 	 {Proceedings of Machine Learning Research},
address = 	 {International Convention Centre, Sydney, Australia},
month = 	 {06--11 Aug},
publisher = 	 {PMLR},
pdf = 	 {http://proceedings.mlr.press/v70/zenke17a/zenke17a.pdf},
url = 	 {http://proceedings.mlr.press/v70/zenke17a.html},
}

Requirements

We have tested this maintenance release (v1.1) with the following configuration:

  • Python 3.5.2
  • Jupyter 4.4.0
  • Tensorflow 1.10
  • Keras 2.2.2

Kudos to Mitra (https://github.com/MitraDarja) for making our code conform with Keras 2.2.2!

Earlier releases

For the original release (v1.0) we used the following configuration of the libraries which were available at the time:

  • Python 3.5.2
  • Jupyter 4.3.0
  • Tensorflow 1.2.1
  • Keras 2.0.5

To revert to such a environment we suggest using virtualenv (https://virtualenv.pypa.io):

virtualenv -p python3 env
source env/bin/activate
pip3 install -vI keras==2.0.5
pip3 install jupyter matplotlib numpy tensorflow-gpu tqdm seaborn
Owner
Ganguli Lab
Ganguli Lab
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022