Machine Learning Algorithms

Overview

Machine-Learning-Algorithms

In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the person's favorite shopping type based on the information provided. In this context, 13 questions were asked to the user. As a result of these questions, the estimation of the shopping type, which is a classification problem, will be carried out with 5 different algorithms.

These algorithms;

  • Logistic Regression
  • Random Forest Classifier
  • Support Vector Machine
  • K Neighbors
  • Decision Tree

algorithms will have a total of 12 parameters

A total of 219 people participated in the survey and the answers given to this form were used in the training of the algorithm.

Target variables to be estimated;

  • Clothing
  • Technology
  • Home/Life
  • Book/Magazine

The questions asked to make the estimation are as follows:

  • Gender
  • Age
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • What is your favorite season?
  • What is the importance of the dollar exchange rate for your shopping?
  • What is your satisfaction level with your budget for shopping?
  • How would you rate your social life?
  • Which of the online shopping sites do you prefer?
  • How often do you go shopping?
  • What is your average sleep time per day?
  • What is your favorite type of shopping? // target

The dataset, which is in the form of a csv file, is read to the system as a dataframe. And the column of information in which hour and minute the user filled out the form, which does not make sense for our algorithm, is removed.

Since the numbers in some columns is way more different than the others before the PCA operation is performed, the standardization process is applied to the columns so that they do not have a greater effect than the combination of these columns during the PCA operation.

The features and target columns to be used during the export of the dataset to the algorithms are determined.

In order to fit the resulting algorithms, the initial state of the dataset, its normalized state and the pca applied states are kept separately. The generated data is divided into parts as train = 0.8 and test = 0.2. Cross Validation process will be applied on 0.8 train data.

Before giving the dataset to the 5 algorithms, the answers written in the text in the dataset and the text in the other questions are encoded and the dataset is converted into numbers.

The 5 algorithms are functions from the sklearn library. The Cross Validation process was performed using the GridSearchCV() function, excluding the Logistic Regression algorithm. In the Logistic regression algorithm, since it is possible to do Cross Validation with the logistic regression function it is not necessary to use GridSearchCV().

GridSearchCV() applies K-Fold Cross Validation by trying the parameters I gave for the function, the number of K for my project is 10. By dividing the cross validation process parameters and the train data we provide, it is determined at which values we can get the best result.

An algorithm is created using the determined parameters and the algorithm is tested with the test data to be fitted with the train data.

Detailed information about dataset can be found in the report.

Owner
Göktuğ Ayar
Computer Engineering student at Yildiz Technical University
Göktuğ Ayar
flexible time-series processing & feature extraction

A corona statistics and information telegram bot.

PreDiCT.IDLab 206 Dec 28, 2022
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023