Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

Overview

CI Publish Docker Cloud Build Status ✔️ Linux ✔️ OS X Windows (#39)

Uptime Robot status Twitter Follow

Welcome to graph-app-kit

Turn your graph data into a secure and interactive visual graph app in 15 minutes!

Screenshot

Why

This open source effort puts together patterns the Graphistry team has reused across many graph projects as teams go from code-heavy Jupyter notebook experiments to deploying streamlined analyst tools. Whether building your first graph app, trying an idea, or wanting to check a reference, this project aims to simplify that process. It covers pieces like: Easy code editing and deployment, a project stucture ready for teams, built-in authentication, no need for custom JS/CSS at the start, batteries-included data + library dependencies, and fast loading & visualization of large graphs.

What

  • Minimal core: The barebones dashboard server. In provides a StreamLit docker-compose container with PyData ecosystem libraries and examples of visualizing data from various systems. Install it, plug in credentials to various web services like cloud databases and a free Graphistry Hub visualization account, and launch.

  • Full core: Initially for AWS, the full core bundles adds to the docker-compose system: Accounts, Jupyter notebooks for authoring, serves StreamLit dashboards with both public + private zones, and runs Graphistry/RAPIDS locally on the same server. Launch with on click via the Cloud Formation template.

  • Full core + DB: DB-specific variants are the same as minimal/full, and add simpler DB-specific quick launching/connecting.

Get started

Quick (Local code) - minimal core + third-party connectors

# Minimal core
git clone https://github.com/graphistry/graph-app-kit.git
cd graph-app-kit/src/docker
sudo docker-compose build

# Optional: Edit src/docker/.env (API accounts), docker-compose.yml: Auth, ports, ...

# Launch
sudo docker-compose up -d
sudo docker-compose logs -f -t --tail=100

=> http://localhost:8501/

To add views and relaunch:

# Add dashboards @ src/python/views/<your_custom_view>/__init__.py

sudo docker-compose up -d --force-recreate

Quick Launchers - minimal/full core

  1. Quick launch options:

Full: Launch Stack

  • Public + protected Streamlit dashboards, Jupyter notebooks + editing, Graphistry, RAPIDS
  • Login to web UI as admin / i-instanceid -> file uploader, notebooks, ...
  • Dashboards: /public/dash and /private/dash
  • More info

Admin:

# launch logs
tail -f /var/log/cloud-init-output.log -n 1000

# app logs
sudo docker ps
sudo docker logs -f -t --tail=1 MY_CONTAINER

# restart a graphistry container
cd graphistry && sudo docker-compose restart MY_CONTAINER

# restart caddy (Caddy 1 override)
cd graphistry && sudo docker-compose -f docker-compose.gak.graphistry.yml up -d caddy

# run streamlit
cd graph-app-kit/public/graph-app-kit && docker-compose -p pub run -d --name streamlit-pub streamlit
cd graph-app-kit/private/graph-app-kit && docker-compose -p priv run -d --name streamlit-priv streamlit

Minimal: Open Streamlit, ssh to connect/add free Graphistry Hub username/pass:

Database-specific: Amazon Neptune, TigerGraph

  1. Add views

  2. Main configurations and extensions: Database connectors, authentication, notebook-based editing, and more

The pieces

Core

  • Prebuilt Python project structure ready for prototyping
  • Streamlit quick self-serve dashboarding
  • Graphistry point-and-click GPU-accelerated visual graph analytics
  • Data frames: Data wrangling via Pandas, Apache Arrow, RAPIDS (ex: cuDF), including handling formats such as CSV, XLS, JSON, Parquet, and more
  • Standard Docker and docker-compose cross-platform deployment

GPU acceleration (optional)

If GPUs are present, graph-app-kit leverages GPU cloud acceleration:

  • GPU Analytics: RAPIDS and CUDA already setup for use if run with an Nvidia docker runtime - cudf GPU dataframes, BlazingSQL GPU SQL, cuGraph GPU graph algorithms, cuML libraries, and more

  • GPU Visualization: Connect to an external Graphistry server or, faster, run on the same GPU server

Prebuilt integrations & recipes

graph-app-kit works well with the Python data ecosystem (pandas, cudf, PySpark, SQL, ...) and we're growing the set of builtins and recipes:

Contribute

We welcome all sorts of help!

  • Deployment: Docker, cloud runners, ...
  • Dependencies: Common graph packages
  • Connectors: Examples for common databases and how to get a lot of data out
  • Demos!

See develop.md for more contributor information

Owner
Graphistry
Visualize magnitudes more data in the browser.
Graphistry
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023