Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Overview

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Official Pytorch implementation of Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Setup

This setting requires CUDA 11. However, you can still use your own environment by installing requirements including PyTorch and Torchvision.

  1. Install conda environment and activate it
conda env create -f environment.yml
conda activate biascon
  1. Prepare dataset.
  • Biased MNIST
    By default, we set download=True for convenience.
    Thus, you only have to make the empty dataset directory with mkdir -p data/biased_mnist and run the code.

  • CelebA
    Download CelebA dataset under data/celeba

  • UTKFace
    Download UTKFace dataset under data/utk_face

  • ImageNet & ImageNet-A
    We use ILSVRC 2015 ImageNet dataset.
    Download ImageNet under ./data/imagenet and ImageNet-A under ./data/imagenet-a

Biased MNIST (w/ bias labels)

We use correlation {0.999, 0.997, 0.995, 0.99, 0.95, 0.9}.

Bias-contrastive loss (BiasCon)

python train_biased_mnist_bc.py --corr 0.999 --seed 1

Bias-balancing loss (BiasBal)

python train_biased_mnist_bb.py --corr 0.999 --seed 1

Joint use of BiasCon and BiasBal losses (BC+BB)

python train_biased_mnist_bc.py --bb 1 --corr 0.999 --seed 1

CelebA

We assess CelebA dataset with target attributes of HeavyMakeup (--task makeup) and Blonde (--task blonde).

Bias-contrastive loss (BiasCon)

python train_celeba_bc.py --task makeup --seed 1

Bias-balancing loss (BiasBal)

python train_celeba_bb.py --task makeup --seed 1

Joint use of BiasCon and BiasBal losses (BC+BB)

python train_celeba_bc.py --bb 1 --task makeup --seed 1

UTKFace

We assess UTKFace dataset biased toward Race (--task race) and Age (--task age) attributes.

Bias-contrastive loss (BiasCon)

python train_utk_face_bc.py --task race --seed 1

Bias-balancing loss (BiasBal)

python train_utk_face_bb.py --task race --seed 1

Joint use of BiasCon and BiasBal losses (BC+BB)

python train_utk_face_bc.py --bb 1 --task race --seed 1

Biased MNIST (w/o bias labels)

We use correlation {0.999, 0.997, 0.995, 0.99, 0.95, 0.9}.

Soft Bias-contrastive loss (SoftCon)

  1. Train a bias-capturing model and get bias features.
python get_biased_mnist_bias_features.py --corr 0.999 --seed 1
  1. Train a model with bias features.
python train_biased_mnist_softcon.py --corr 0.999 --seed 1

ImageNet

We use texture cluster information from ReBias (Bahng et al., 2020).

Soft Bias-contrastive loss (SoftCon)

  1. Train a bias-capturing model and get bias features.
python get_imagenet_bias_features.py --seed 1
  1. Train a model with bias features.
python train_imagenet_softcon.py --seed 1
Owner
Youngkyu
Machine Learning Engineer / Backend Engineer
Youngkyu
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022