Download and preprocess popular sequential recommendation datasets

Overview

Build Status codebeat badge

Sequential Recommendation Datasets

This repository collects some commonly used sequential recommendation datasets in recent research papers and provides a tool for downloading, preprocessing and batch-loading those datasets. The preprocessing method can be customized based on the task, for example: short-term recommendation (including session-based recommendation) and long-short term recommendation. Loading has faster version which intergrates the DataLoader of PyTorch.

Datasets

Install this tool

Stable version

pip install -U srdatasets —-user

Latest version

pip install git+https://github.com/guocheng2018/sequential-recommendation-datasets.git --user

Download datasets

Run the command below to download datasets. As some datasets are not directly accessible, you'll be warned to download them manually and place them somewhere it tells you.

srdatasets download --dataset=[dataset_name]

To get a view of downloaded and processed status of all datasets, run

srdatasets info

Process datasets

The generic processing command is

srdatasets process --dataset=[dataset_name] [--options]

Splitting options

Two dataset splitting methods are provided: user-based and time-based. User-based means that splitting is executed on every user behavior sequence given the ratio of validation set and test set, while time-based means that splitting is based on the date of user behaviors. After splitting some dataset, two processed datasets are generated, one for development, which uses the validation set as the test set, the other for test, which contains the full training set.

--split-by     User or time (default: user)
--test-split   Proportion of test set to full dataset (default: 0.2)
--dev-split    Proportion of validation set to full training set (default: 0.1)

NOTE: time-based splitting need you to manually input days at console by tipping you total days of that dataset, since you may not know.

Task related options

For short term recommnedation task, you use previous input-len items to predict next target-len items. To make user interests more focused, user behavior sequences can also be cut into sessions if session-interval is given. If the number of previous items is smaller than input-len, 0 is padded to the left.

For long and short term recommendation task, you use pre-sessions previous sessions and current session to predict target-len items. The target items are picked randomly or lastly from current session. So the length of current session is max-session-len - target-len while the length of any previous session is max-session-len. If any previous session or current session is shorter than the preset length, 0 is padded to the left.

--task              Short or long-short (default: short)
--input-len         Number of previous items (default: 5)
--target-len        Number of target items (default: 1)
--pre-sessions      Number of previous sessions (default: 10)
--pick-targets      Randomly or lastly pick items from current session (default: random)
--session-interval  Session splitting interval (minutes)  (default: 0)
--min-session-len   Sessions less than this in length will be dropped  (default: 2)
--max-session-len   Sessions greater than this in length will be cut  (default: 20)

Common options

--min-freq-item        Items less than this in frequency will be dropped (default: 5)
--min-freq-user        Users less than this in frequency will be dropped (default: 5)
--no-augment           Do not use data augmentation (default: False)
--remove-duplicates    Remove duplicated items in user sequence or user session (if splitted) (default: False)

Dataset related options

--rating-threshold  Interactions with rating less than this will be dropped (Amazon, Movielens, Yelp) (default: 4)
--item-type         Recommend artists or songs (Lastfm) (default: song)

Version

By using different options, a dataset will have many processed versions. You can run the command below to get configurations and statistics of all processed versions of some dataset. The config id shown in output is a required argument of DataLoader.

srdatasets info --dataset=[dataset_name]

DataLoader

DataLoader is a built-in class that makes loading processed datasets easy. Practically, once initialized a dataloder by passing the dataset name, processed version (config id), batch_size and a flag to load training data or test data, you can then loop it to get batch data. Considering that some models use rank-based learning, negative sampling is intergrated into DataLoader. The negatives are sampled from all items except items in current data according to popularity. By default it (negatives_per_target) is turned off. Also, the time of user behaviors is sometimes an important feature, you can include it into batch data by setting include_timestmap to True.

Arguments

  • dataset_name: dataset name (case insensitive)
  • config_id: configuration id
  • batch_size: batch size (default: 1)
  • train: load training dataset (default: True)
  • development: load the dataset aiming for development (default: False)
  • negatives_per_target: number of negative samples per target (default: 0)
  • include_timestamp: add timestamps to batch data (default: False)
  • drop_last: drop last incomplete batch (default: False)

Attributes

  • num_users: total users in training dataset
  • num_items: total items in training dataset (not including the padding item 0)

Initialization example

from srdatasets.dataloader import DataLoader

trainloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=True, negatives_per_target=5, include_timestamp=True)
testloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=False, include_timestamp=True)

For pytorch users, there is a wrapper implementation of torch.utils.data.DataLoader, you can then set keyword arguments like num_workers and pin_memory to speed up loading data

from srdatasets.dataloader_pytorch import DataLoader

trainloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=True, negatives_per_target=5, include_timestamp=True, num_workers=8, pin_memory=True)
testloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=False, include_timestamp=True, num_workers=8, pin_memory=True)

Iteration template

For short term recommendation task

for epoch in range(10):
    # Train
    for users, input_items, target_items, input_item_timestamps, target_item_timestamps, negative_samples in trainloader:
        # Shape
        #   users:                  (batch_size,)
        #   input_items:            (batch_size, input_len)
        #   target_items:           (batch_size, target_len)
        #   input_item_timestamps:  (batch_size, input_len)
        #   target_item_timestamps: (batch_size, target_len)
        #   negative_samples:       (batch_size, target_len, negatives_per_target)
        #
        # DataType
        #   numpy.ndarray or torch.LongTensor
        pass

    # Test
    for users, input_items, target_items, input_item_timestamps, target_item_timestamps in testloader:
        pass

For long and short term recommendation task

for epoch in range(10):
    # Train
    for users, pre_sessions_items, cur_session_items, target_items, pre_sessions_item_timestamps, cur_session_item_timestamps, target_item_timestamps, negative_samples in trainloader:
        # Shape
        #   users:                          (batch_size,)
        #   pre_sessions_items:             (batch_size, pre_sessions * max_session_len)
        #   cur_session_items:              (batch_size, max_session_len - target_len)
        #   target_items:                   (batch_size, target_len)
        #   pre_sessions_item_timestamps:   (batch_size, pre_sessions * max_session_len)
        #   cur_session_item_timestamps:    (batch_size, max_session_len - target_len)
        #   target_item_timestamps:         (batch_size, target_len)
        #   negative_samples:               (batch_size, target_len, negatives_per_target)
        #
        # DataType
        #   numpy.ndarray or torch.LongTensor
        pass

    # Test
    for users, pre_sessions_items, cur_session_items, target_items, pre_sessions_item_timestamps, cur_session_item_timestamps, target_item_timestamps in testloader:
        pass

Disclaimers

This repo does not host or distribute any of the datasets, it is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022