Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

Related tags

Data AnalysisPyUpBit
Overview

Contributors Forks Stargazers Issues LinkedIn


PyUpBit

CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing
Paper

Table of Contents
  1. About The Project
  2. Usage
  3. Contact
  4. Acknowledgements

About The Project

Bitmaps are common data structures used in database implemen- tations due to having fast read performance. Often they are used in applications in need of common equality and selective range queries. Essentially, they store a bit-vector for each value in the domain of each attribute to keep track of large scale data files. How- ever, the main drawbacks associated with bitmap indexes are its encoding and decoding performances of bit-vectors. Currently the state of art update-optimized bitmap index, update conscious bitmaps, are able to support extremely efficient deletes and have improved update speeds by treating updates as delete then insert. Update conscious bitmaps make use of an additional bit-vector, called the existence bit-vector, to keep track of whether or not a value has been updated. By initializing all values of the existence bit-vector to 1, the data for each attribute associated with each row in the existence bit-vector is validated and presented. If a value needs to be deleted, the corresponding row in the existence bit-vector gets changed to 0, invalidating any data associated with that row. This new method in turn allows for very efficient deletes. To add on, updates are then performed as a delete operation, then an insert operation in to the end of the bit-vector. However, update conscious bitmaps do not scale well with more data. As more and more data gets updated and inserted, the run time increases significantly as well. Because update queries are out-of- place and increase size of vectors, read queries become increasingly expensive and time consuming. Furthermore, as the number of updates and deletes increases, the bit-vector becomes less and less compressible. This brings us to updateable Bitmaps (UpBit). According to the paper, UpBit: Scalable In-Memory Updatable Bitmap Indexing, re- searchers Manos Athanassoulis, Zheng Yan, and Stratos Idreos developed a new bitmap structure that improved the write per- formance of bitmaps without sacrificing read performance. The main differentiating point of UpBit is its use of an update bit vector for every value in the domain of an attribute that keeps track of updated values. This allows for faster write performance without sacrificing read performance. Based on this paper, we implemented UpBit and compared it to our implementation of update conscious bitmaps to compare and test the performances of both methods.

Usage

We used PyCharm to conduct our tests, /ucb, /upbit for algorithms, /tests for running testing scripts, and rest of the files for compression for memory usage improvement as well as creating and visualizing data.

Contact

Daniel Park - @h1yung - [email protected]

Acknowledgements

  • Original Paper
  • Winston Chen
  • Gregory Chininis
  • Daniel Hooks
  • Michael Lee
Owner
Hyeong Kyun (Daniel) Park
I like coding
Hyeong Kyun (Daniel) Park
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
Fitting thermodynamic models with pycalphad

ESPEI ESPEI, or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for thermodynamic database development within the CALPHAD method

Phases Research Lab 42 Sep 12, 2022
Analysiscsv.py for extracting analysis and exporting as CSV

wcc_analysis Lichess page documentation: https://lichess.org/page/world-championships Each WCC has a study, studies are fetched using: https://lichess

32 Apr 25, 2022
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

George Karakostas 1 Jan 19, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
An Aspiring Drop-In Replacement for NumPy at Scale

Legate NumPy is a Legate library that aims to provide a distributed and accelerated drop-in replacement for the NumPy API on top of the Legion runtime. Using Legate NumPy you do things like run the f

Legate 502 Jan 03, 2023
A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021