Avocado hass time series vs predict price

Overview

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE

Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới image

predict_avocado

https://avocado-hass.herokuapp.com/ deployed to Heroku

Please change setting to theme dark

Nếu trường muốn coi trên máy local host thì làm các bước sau:

Bước 1: Down code trên github về Bước 2: Vào trang streamlit để thực hiện theo hướng dẫn của treamlit: https://docs.streamlit.io/library/get-started/installation

I. TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU

  1. Mục đích
    • Dự đoán giá bơ trung bình của bơ "Hass" ở Mỹ
    • Xem xét mở rộng các loại trang trại Bơ đang có trong việc trồng bơ ở các vùng khác
    • Xây dựng mô hình dự báo giá trùng bình của bơ "Hass" ở Mỹ sau đó xem xét việc mở rộng sản xuất kinh doanh
  2. Vi sao có dự án nào ?
    • Ai (Who): Doanh nghiệp là người cần
    • Tại sao (Why): Giá bơ biến động ở các vùng khác nhau ? Có nên trồng bơ các vùng đó không ?
  3. Hiện tại
    • Công ty kinh doanh quả bơ ở rất nhiều vùng của nước Mỹ có 2 loại bơ: Bơ thường và bơ hữu cơ
    • Quy cách đóng gọi theo nhiều quy chuẩn: Small/ Large/ Xlarge Bags
    • Có 3 loại item (product look up) khác nhau: 4046, 4225, 4770
  4. Vấn đề
    • Doanh nghiệp chưa có mô hình dự báo giá bơ cho việc mở rộng
    • Tối ưu sao việc tiếp cận giá bơ tới người tiêu dùng thấp nhất
  5. Thách thức và cách tiếp cận - Challenge and Approach
    • Dữ liệu được lấy trực tiếp từ máy tính tính tiền của các nhà bán lẻ dựa trên doanh số bán lẻ thực tế của bơ Hass
    • Dữ liệu đại diện cho dữ liệu lấy từ máy quét bán lẻ hàng tuần cho lượng bán lẻ (National retail volumn - units) và giá bơ từ tháng 4/2015 đến tháng 3/2018
    • Giá Trung bình (Average Price) trong bảng phản ánh giá trên một đơn vị (mỗi quả bơ), ngay cả khi nhiều đơn vị (bơ) được bán trong bao
    • Mã tra cứu sản phẩm - Product Lookup codes (PLU’s) trong bảng chỉ dành cho bơ Hass, không dành cho các sản phẩm khác.
  6. Data obtained - Thu thập dữ liệu
    • Không thông quan nguồn cào data
    • Toàn bộ dữ liệu được đổ ra và lưu trữ trong tập tin avocado.csv với 18249 record.
    • Có 2 loại bơ trong tập dữ liệu và một số vùng khác nhau. Điều này cho phép chúng ta thực hiện tất cả các loại phân tích cho các vùng khác nhau hoặc phân tích toàn bộ nước mỹ theo một trong 2 loại bơ
  7. Đặt ra yêu cầu với bài toán

Yêu cầu 1: Với bài toán 1: thực hiện dự đoán giá bơ trung bình

  • Thực hiện các tiền xử lý dữ liệu bổ sung (nếu cần)
  • Ngoài những thuật toán regression đã được thực hiện, có thuật toán nào khác cho kết quả tốt hơn không? Thực hiện với thuật toán đó. Tổng hợp kết quả thu được."

Yêu cầu 2: Với bài toán 2: Thực hiện dự đoán giá, khả năng mở rộng trong tương lai với Organic Avocado ở vùng California

Yêu cầu 3: Hãy làm tiếp phần dự đoán giá bơ thường (Conventiton Avocado) của vùng California

Yêu cầu 4: Hãy chọn ra 1 vùng (Trong danh sách các vùng bơ "Hass" đang kinh doanh) mà bạn cho rằng trong tương lai có thể trong trọt, sản xuất kinh doanh (organic và/ hoặc Conventional Avocado). Hãy chứng minh đều này bằng cách triển khai các bài toán như đã với vùng california

II. TỔNG QUAN VỀ THỊ TRƯỜNG

  1. Thị trường Hoa Kỳ image
  2. Mục tiêu và cấn tiếp cận image
  3. Ai là người và cần gì ? image
  4. Kết luận image

III. HƯỚNG DẪN SỬ DỤNG VÀ CHỌN CÁC TÍNH NĂNG DỰ ĐOÁN GIÁ BƠ

image

Owner
hieulmsc
Supply chain management and finance, costing analysis
hieulmsc
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023