This repository contains implementations of all Machine Learning Algorithms from scratch in Python. Mathematics required for ML and many projects have also been included.

Overview

👏 Pre- requisites to Machine Learning

                                                                                                                       Key :-
1️⃣ Python Basics                                                                                                      🔴 Not Done Yet 
    a. Python basics :- variables, list, sets, tuples, loops, functions, lambda functions, dictionary, input methods   rest are completed
    b. Python Oops
    c. File and Error Handling 
    d. Iteration Protocol and Generators
    
2️⃣ Data Acquisition
    a. Data Acquisition using Beautiful Soup 
    b. Data Acquisition using Web APIs
    
3️⃣ Python Libraries :-
    a. Numpy
    b. Matplotlib
    c. Seaborn
    d. Pandas
   🔴Plotly
    
4️⃣ Feature Selection and Extraction
    a.Feature Selection - Chi2 test, RandomForest Classifier
    b.Feature Extraction - Principal Component Analysis

💯 Basics of Machine Learning

1️⃣ Basic
    ✅Types of ML
    ✅Challenges in ML
    ✅Overfitting and Underfitting
    🔴Testing and Validation
    🔴Cross Validation
    🔴Grid Search
    🔴Random Search
    🔴Confusion Matrix
    🔴Precision, Recall ], F1 Score
    🔴ROC-AUC Curve
 
 2️⃣ Predictive Modelling
   🔴Introduction to Predictive Modelling
   🔴Model in Analytics
   🔴Bussiness Problem and Prediction Model
   🔴Phases of Predictive Modelling
   🔴Data Exploration for Modelling
   🔴Data and Patterns
   🔴Identifying Missing Data
   🔴Outlier Detection
   🔴Z-Score
   🔴IQR
   🔴Percentile

🔥 Machine-Learning

1️⃣ K- Nearest Neighbour:-
       - Theory
       - Implementation
       
2️⃣ Linear Regression
       - What is Linear Regression
       - What is gradient descent
       - Implementation of gradient descent
       - Importance of Learning Rate
       - Types of Gradient Descent
       - Making predictions on data set
       - Contour and Surface Plots
       - Visualizing Loss function and Gradient Descent
       🔴 Polynomial Regression
       🔴Regularization
       🔴Ridge Regression
       🔴Lasso Regression
       🔴Elastic Net and Early Stopping 
       - Multivariate Linear Regression on boston housing dataset
       - Optimization of Multivariate Linear Regression 
       - Using Scikit Learn for Linear Regression  
       - Closed Form Solution
       - LOWESS - Locally Weighted Regression
       - Maximum Likelihood Estimation
       - Project - Air Pollution Regression
      
 3️⃣ Logistic Regression
      - Hypothesis function
      - Log Loss
      - Proof of Log loss by MLE
      - Gradient Descent Update rule for Logistic Regression
      - Gradient Descent Implementation of Logistic Regression
      🔴Multiclass Classification
      - Sk-Learn Implementation of Logistic Regression on chemical classification dataset.
      
4️⃣ Natural Language Processing 
      - Bag of Words Pipeline 
      - Tokenization and Stopword Removal
      - Regex based Tokenization
      - Stemming & Lemmatization
      - Constructing Vocab
      - Vectorization with Stopwords Removal
      - Bag of Words Model- Unigram, Bigram, Trigram, n- gram
      - TF-IDF Normalization     
      
5️⃣ Naive Bayes
      - Bayes Theorem Formula 
      - Bayes Theorem - Spam or not
      - Bayes Theorem - Disease or not
      - Mushroom Classification
      - Text Classification
      - Laplace Smoothing
      - Multivariate Bernoulli Naive Bayes
      - Multivariate Event Model Naive Bayes
      - Multivariate Bernoulli Naive Bayes vs Multivariate Event Model Naive Bayes
      - Gaussian Naive Bayes
      🔴 Project on Naive Bayes
      
6️⃣ Decision Tree 
      - Entropy
      - Information Gain
      - Process Kaggle Titanic Dataset 
      - Implementation of Information Gain
      - Implementation of Decision Tree
      - Making Predictions
      - Decision Trees using Sci-kit Learn
     
          
 7️⃣ Support Vector Machine 
      - SVM Implementation in Python
      🔴Different Types of Kernel
      🔴Project on SVC
      🔴Project on SVR
      🔴Project on SVC
  
 8️⃣ Principal Component Analysis
     🔴 PCA in Python 
     🔴 PCA Project
     🔴 Fail Case of PCA (Swiss Roll)
     
 9️⃣ K- Means
      🔴 Implentation in Python
      - Implementation using Libraries
      - K-Means ++
      - DBSCAN 
      🔴 Project
 
 🔟 Ensemble Methods and Random Forests
     🔴Ensemble and Voting Classifiers
     🔴Bagging and Pasting
     🔴Random Forest
     🔴Extra Tree
     🔴 Ada Boost
     🔴 Gradient Boosting
     🔴 Gradient Boosting with Sklearn
     🔴 Stacking Ensemble Learning
  
  1️⃣1️⃣  Unsupervised Learning
     🔴 Hierarchical Clustering
     🔴 DBSCAN 
     🔴 BIRCH 
     🔴 Mean - Shift
     🔴 Affinity Propagation
     🔴 Anomaly Detection
     🔴Spectral Clustering
     🔴 Gaussian Mixture
     🔴 Bayesian Gaussian Mixture Models

💯 Mathematics required for Machine Learning

    1️⃣ Statistics:
        a. Measures of central tendency – mean, median, mode
        b. measures of dispersion – mean deviation, standard deviation, quartile deviation, skewness and kurtosis.
        c. Correlation coefficient, regression, least squares principles of curve fitting
        
    2️⃣ Probability:
        a. Introduction, finite sample spaces, conditional probability and independence, Bayes’ theorem, one dimensional random variable, mean, variance.
        
    3️⃣ Linear Algebra :- scalars,vectors,matrices,tensors.transpose,broadcasting,matrix multiplication, hadamard product,norms,determinants, solving linear equations

📚 Handwritten notes with proper implementation and Mathematics Derivations of each algorithm from scratch

   ✅ KNN 
   ✅ Linear Regressio
   ✅ Logistic Regression 
   ✅ Feature Selection and Extraction
   ✅ Naive Bayes

🙌 Projects :-

    🔅 Movie Recommendation System
    🔅 Diabetes Classification 
    🔅 Handwriting Recognition
    🔅 Linkedin Webscraping
    🔅 Air Pollution Regression
Owner
Vanshika Mishra
I am a Data Science Enthusiast. Research and open source piques my interests
Vanshika Mishra
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022