Improving 3D Object Detection with Channel-wise Transformer

Related tags

Deep LearningCT3D
Overview

"Improving 3D Object Detection with Channel-wise Transformer"

Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v0.3. Our paper can be downloaded here ICCV2021.

CT3D Overview of CT3D. The raw points are first fed into the RPN for generating 3D proposals. Then the raw points along with the corresponding proposals are processed by the channel-wise Transformer composed of the proposal-to-point encoding module and the channel-wise decoding module. Specifically, the proposal-to-point encoding module is to modulate each point feature with global proposal-aware context information. After that, the encoded point features are transformed into an effective proposal feature representation by the channel-wise decoding module for confidence prediction and box regression.

[email protected] [email protected] Download
Only Car 86.06 85.79 model-car
3-Category (Car) 85.04 84.97 model-3cat
3-Category (Pedestrian) 56.28 55.58 -
3-Category (Cyclist) 71.71 71.88 -

1. Recommended Environment

  • Linux (tested on Ubuntu 16.04)
  • Python 3.6+
  • PyTorch 1.1 or higher (tested on PyTorch 1.6)
  • CUDA 9.0 or higher (PyTorch 1.3+ needs CUDA 9.2+)

2. Set the Environment

pip install -r requirement.txt
python setup.py develop

3. Data Preparation

# Download KITTI and organize it into the following form:
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2

# Generatedata infos:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml
# Download Waymo and organize it into the following form:
├── data
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── waymo_processed_data
│   │   │   │── segment-xxxxxxxx/
|   |   |   |── ...
│   │   │── pcdet_gt_database_train_sampled_xx/
│   │   │── pcdet_waymo_dbinfos_train_sampled_xx.pkl

# Install tf 2.1.0
# Install the official waymo-open-dataset by running the following command:
pip3 install --upgrade pip
pip3 install waymo-open-dataset-tf-2-1-0 --user

# Extract point cloud data from tfrecord and generate data infos:
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml

4. Train

  • Train with a single GPU
python train.py --cfg_file ${CONFIG_FILE}

# e.g.,
python train.py --cfg_file tools/cfgs/kitti_models/second_ct3d.yaml
  • Train with multiple GPUs or multiple machines
bash scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
# or 
bash scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file ${CONFIG_FILE}

# e.g.,
bash scripts/dist_train.sh 8 --cfg_file tools/cfgs/kitti_models/second_ct3d.yaml

5. Test

  • Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --ckpt ${CKPT}

# e.g., 
python test.py --cfg_file tools/cfgs/kitti_models/second_ct3d.yaml --ckpt output/kitti_models/second_ct3d/default/kitti_val.pth
Owner
Hualian Sheng
Hualian Sheng
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022