Replication attempt for the Protein Folding Model

Overview

RGN2-Replica (WIP)

To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding for particular use when no evolutionary homologs are available (ie. for protein design).

Install

$ pip install rgn2-replica

To load sample dataset

from datasets import load_from_disk
ds = load_from_disk("data/ur90_small")
print(ds['train'][0])

To convert to pandas for exploration

df = ds['train'].to_pandas()
df.sample(5)

To train ProteinLM

Run the following command with default parameters

python -m scripts.lmtrainer

This will start the run using sample dataset in repo directory on CPU.

TO-DO LIST: ordered by priority

  • Provide basic package and file structure

  • RGN2:

    • Contribute adaptation of RGN1 for different ops
      • Simple LSTM with:
        • Inputs (B, L, emb_dim)
        • Outputs (B, L, 4) (4 features which should be outputs of linear projections)
    • Find a good (and reproducible) training scheme
    • Benchmark regression vs classification of torsional alphabet
  • Language Model:

  • To be merged when first versions of RGN are ready:

    • Geometry module
    • Adapt functionality from MP-NeRF:
      • Sidechain building
      • Full backbone from CA
      • Fast loss functions and metrics
      • Modifications to convert LSTM cell into RGN cell
  • Contirbute trainer classes / functionality.

    • Sequence preprocessing for AminoBERT
      • inverted fragments
      • sequence masking
      • loss function wrapper v1 by @DrHB
      • Sample dataset by @gurvindersingh
      • Dataloder
      • ...
  • Contribute Data Infra for training:

  • Contribute Rosetta Scripts ( contact me by email ([email protected]) / discord to get a key for Rosetta if interested in doing this part. )

  • NOTES:

  • Use functionality provided in MP-NeRF wherever possible (avoid repetition).

Contribute:

Hey there! New ideas are welcome: open/close issues, fork the repo and share your code with a Pull Request.

Currently the main discussions / conversation about the model development is happening in this discord server under the /self-supervised-learning channel.

Clone this project to your computer:

git clone https://github.com/EricAlcaide/pysimplechain

Please, follow this guideline on open source contribtuion

Citations:

@article {Chowdhury2021.08.02.454840,
    author = {Chowdhury, Ratul and Bouatta, Nazim and Biswas, Surojit and Rochereau, Charlotte and Church, George M. and Sorger, Peter K. and AlQuraishi, Mohammed},
    title = {Single-sequence protein structure prediction using language models from deep learning},
    elocation-id = {2021.08.02.454840},
    year = {2021},
    doi = {10.1101/2021.08.02.454840},
    publisher = {Cold Spring Harbor Laboratory},
    URL = {https://www.biorxiv.org/content/early/2021/08/04/2021.08.02.454840},
    eprint = {https://www.biorxiv.org/content/early/2021/08/04/2021.08.02.454840.full.pdf},
    journal = {bioRxiv}
}

@article{alquraishi_2019,
	author={AlQuraishi, Mohammed},
	title={End-to-End Differentiable Learning of Protein Structure},
	volume={8},
	DOI={10.1016/j.cels.2019.03.006},
	URL={https://www.cell.com/cell-systems/fulltext/S2405-4712(19)30076-6}
	number={4},
	journal={Cell Systems},
	year={2019},
	pages={292-301.e3}
Owner
Eric Alcaide
Y el mayor bien es pequeño; que toda la vida es sueño, y los sueños, sueños son.
Eric Alcaide
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022