Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Overview

Regression Transformer

License: MIT

Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Summary.

Development setup

conda env create -f conda.yml
conda activate terminator
pip install -e .

Generate some data

Example data for QED can be generated using scripts/generate_example_data.py.

python scripts/generate_example_data.py examples/example.smi examples/qed_property_example.txt

If you need to create a new vocabulary for a dataset you can use scripts/create_vocabulary.py it will also automatically add some special tokens at the top of your vocabulary file.

python scripts/create_vocabulary.py examples/qed_property_example.txt examples/vocab.txt

At this point the folder containing the vocabulary file can be used to load a tokenizer compatible with any ExpressionBertTokenizer:

>>> from terminator.tokenization import ExpressionBertTokenizer
>>> tokenizer = ExpressionBertTokenizer.from_pretrained('examples')
>>> text = '
   
    0.3936|CBr'
   
>>> tokens = tokenizer.tokenize(text)
>>> print(tokens)
['
   
    '
   , '_0_0_', '_._', '_3_-1_', '_9_-2_', '_3_-3_', '_6_-4_', '|', 'C', 'Br']
>>> token_indexes = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
>>> print(token_indexes)
[16, 17, 18, 28, 45, 34, 35, 19, 15, 63]
>>> tokenizer.build_inputs_with_special_tokens(token_indexes)
[12, 16, 17, 18, 28, 45, 34, 35, 19, 15, 63, 13]

Prepare some train/eval data line by line:

head -n 900 examples/qed_property_example.txt > examples/train.txt
tail -n +901 examples/qed_property_example.txt > examples/eval.txt

Launch the training:

python scripts/run_language_modeling.py --output_dir examples/models/xlnet_selfies \
    --config_name configs/xlnet_selfies.json --tokenizer_name ./examples/vocab.txt \
    --do_train --do_eval --learning_rate 1e-4 --num_train_epochs 5 --save_total_limit 2 \
    --save_steps 500 --per_gpu_train_batch_size 16 --evaluate_during_training --eval_data_file ./examples/eval.txt \
    --train_data_file ./examples/train.txt --line_by_line --block_size 510 --seed 42 --logging_steps 250

Exemplary model configurations (number of heads, layers, etc.) can be found in the configs folder.

Owner
International Business Machines
International Business Machines
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023