Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

Overview

MusCaps: Generating Captions for Music Audio

Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1
1 Queen Mary University of London, 2 Universal Music Group

This repository is the official implementation of "MusCaps: Generating Captions for Music Audio" (IJCNN 2021). In this work, we propose an encoder-decoder model to generate natural language descriptions of music audio. We provide code to train our model on any dataset of (audio, caption) pairs, together with code to evaluate the generated descriptions on a set of automatic metrics (BLEU, METEOR, ROUGE, CIDEr, SPICE, SPIDEr).

Setup

The code was developed in Python 3.7 on Linux CentOS 7 and training was carried out on an RTX 2080 Ti GPU. Other GPUs and platforms have not been fully tested.

Clone the repo

git clone https://github.com/ilaria-manco/muscaps
cd muscaps

You'll need to have the libsndfile library installed. All other requirements, including the code package, can be installed with

pip install -r requirements.txt
pip install -e .

Project structure

root
├─ configs                      # Config files
│   ├─ datasets
│   ├─ models  
│   └─ default.yaml              
├─ data                         # Folder to save data (input data, pretrained model weights, etc.)
│   ├─ audio_encoders   
│   ├─ datasets            
│   │   └─ dataset_name     
|   └── ...             
├─ muscaps
|   ├─ caption_evaluation_tools # Translation metrics eval on audio captioning 
│   ├─ datasets                 # Dataset classes
│   ├─ models                   # Model code
│   ├─ modules                  # Model components
│   ├─ scripts                  # Python scripts for training, evaluation etc.
│   ├─ trainers                 # Trainer classes
│   └─ utils                    # Utils
└─ save                         # Saved model checkpoints, logs, configs, predictions    
    └─ experiments
        ├── experiment_id1
        └── ...                  

Dataset

The datasets used in our experiments is private and cannot be shared, but details on how to prepare an equivalent music captioning dataset are provided in the data README.

Pre-trained audio feature extractors

For the audio feature extraction component, MusCaps uses CNN-based audio tagging models like musicnn. In our experiments, we use @minzwon's implementation and pre-trained models, which you can download from the official repo. For example, to obtain the weights for the HCNN model trained on the MagnaTagATune dataset, run the following commands

mkdir data/audio_encoders
cd data/audio_encoders/
wget https://github.com/minzwon/sota-music-tagging-models/raw/master/models/mtat/hcnn/best_model.pth
mv best_model.pth mtt_hcnn.pth

Training

Dataset, model and training configurations are set in the respective yaml files in configs. Some of the fields can be overridden by arguments in the CLI (for more details on this, refer to the training script).

To train the model with the default configs, simply run

cd muscaps/scripts/
python train.py <baseline/attention> --feature_extractor <musicnn/hcnn> --pretrained_model <msd/mtt>  --device_num <gpu_number>

This will generate an experiment_id and create a new folder in save/experiments where the output will be saved.

If you wish to resume training from a saved checkpoint, run

python train.py <baseline/attention> --experiment_id <experiment_id>  --device_num <gpu_number>

Evaluation

To evaluate a model saved under <experiment_id> on the captioning task, run

cd muscaps/scripts/
python caption.py <experiment_id> --metrics True

Cite

@misc{manco2021muscaps,
      title={MusCaps: Generating Captions for Music Audio}, 
      author={Ilaria Manco and Emmanouil Benetos and Elio Quinton and Gyorgy Fazekas},
      year={2021},
      eprint={2104.11984},
      archivePrefix={arXiv}
}

Acknowledgements

This repo reuses some code from the following repos:

Contact

If you have any questions, please get in touch: [email protected].

Owner
Ilaria Manco
AI & Music PhD Researcher at the Centre for Digital Music (QMUL)
Ilaria Manco
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022