Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

Overview

🦩 Flamingo - Pytorch

Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the perceiver resampler (including the scheme where the learned queries contributes keys / values to be attended to, in addition to media embeddings), the specialized masked cross attention blocks, and finally the tanh gating at the ends of the cross attention + corresponding feedforward blocks

Install

$ pip install flamingo-pytorch

Usage

import torch
from flamingo_pytorch import PerceiverResampler

perceive = PerceiverResampler(
    dim = 1024,
    depth = 2,
    dim_head = 64,
    heads = 8,
    num_latents = 64,    # the number of latents to shrink your media sequence to, perceiver style
    num_time_embeds = 4  # say you have 4 images maximum in your dialogue
)

medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension)
perceived = perceive(medias) # (1, 2, 64, 1024) - (batch, time, num latents, dimension)

Then you insert the GatedCrossAttentionBlock at different intervals in your giant language model. Your text would then attend to the perceived media from above

The recommended way to derive the media_locations boolean tensor would be to allocate a special token id to the media, and then, at the start of your large language model, do media_locations = text_id == media_token_id

import torch
from flamingo_pytorch import GatedCrossAttentionBlock

cross_attn = GatedCrossAttentionBlock(
    dim = 1024,
    dim_head = 64,
    heads = 8
)

text = torch.randn(1, 512, 1024)
perceived = torch.randn(1, 2, 64, 1024)

media_locations = torch.randint(0, 2, (1, 512)).bool()

text = cross_attn(
    text,
    perceived,
    media_locations = media_locations
)

That's it!

Attention is all you need.

Full working example with Flamingo + PaLM 🌴 🦩 🌴

Integration with PaLM

First install vit-pytorch for the vision encoder

$ pip install vit-pytorch

Then

from vit_pytorch.vit import ViT
from vit_pytorch.extractor import Extractor

vit = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)

vit = Extractor(vit, return_embeddings_only = True)

# first take your trained image encoder and wrap it in an adapter that returns the image embeddings
# here we use the ViT from the vit-pytorch library

import torch
from flamingo_pytorch import FlamingoPaLM

# a PaLM language model, the 540 billion parameter model from google that shows signs of general intelligence

flamingo_palm = FlamingoPaLM(
    num_tokens = 20000,          # number of tokens
    dim = 1024,                  # dimensions
    depth = 12,                  # depth
    heads = 8,                   # attention heads
    dim_head = 64,               # dimension per attention head
    img_encoder = vit,           # plugin your image encoder (this can be optional if you pass in the image embeddings separately, but probably want to train end to end given the perceiver resampler)
    media_token_id = 3,          # the token id representing the [media] or [image]
    cross_attn_every = 3,        # how often to cross attend
    perceiver_num_latents = 64,  # perceiver number of latents, should be smaller than the sequence length of the image tokens
    perceiver_depth = 2          # perceiver resampler depth
)

# train your PaLM as usual

text = torch.randint(0, 20000, (2, 512))

palm_logits = flamingo_palm(text)

# after much training off the regular PaLM logits
# now you are ready to train Flamingo + PaLM
# by passing in images, it automatically freezes everything but the perceiver and cross attention blocks, as in the paper

dialogue = torch.randint(0, 20000, (4, 512))
images = torch.randn(4, 2, 3, 256, 256)

flamingo_logits = flamingo_palm(dialogue, images)

# do your usual cross entropy loss

It is quite evident where this is all headed if you think beyond just images.

Inception

For factual correctness, just imagine where this system would stand if one were to use a state of the art retrieval language model as the base.

Citations

@article{Alayrac2022Flamingo,
    title   = {Flamingo: a Visual Language Model for Few-Shot Learning},
    author  = {Jean-Baptiste Alayrac et al},
    year    = {2022}
}
@inproceedings{Chowdhery2022PaLMSL,
    title   = {PaLM: Scaling Language Modeling with Pathways},
    author  = {Aakanksha Chowdhery and Sharan Narang and Jacob Devlin and Maarten Bosma and Gaurav Mishra and Adam Roberts and Paul Barham and Hyung Won Chung and Charles Sutton and Sebastian Gehrmann and Parker Schuh and Kensen Shi and Sasha Tsvyashchenko and Joshua Maynez and Abhishek Rao and Parker Barnes and Yi Tay and Noam M. Shazeer and Vinodkumar Prabhakaran and Emily Reif and Nan Du and Benton C. Hutchinson and Reiner Pope and James Bradbury and Jacob Austin and Michael Isard and Guy Gur-Ari and Pengcheng Yin and Toju Duke and Anselm Levskaya and Sanjay Ghemawat and Sunipa Dev and Henryk Michalewski and Xavier Garc{\'i}a and Vedant Misra and Kevin Robinson and Liam Fedus and Denny Zhou and Daphne Ippolito and David Luan and Hyeontaek Lim and Barret Zoph and Alexander Spiridonov and Ryan Sepassi and David Dohan and Shivani Agrawal and Mark Omernick and Andrew M. Dai and Thanumalayan Sankaranarayana Pillai and Marie Pellat and Aitor Lewkowycz and Erica Oliveira Moreira and Rewon Child and Oleksandr Polozov and Katherine Lee and Zongwei Zhou and Xuezhi Wang and Brennan Saeta and Mark Diaz and Orhan Firat and Michele Catasta and Jason Wei and Kathleen S. Meier-Hellstern and Douglas Eck and Jeff Dean and Slav Petrov and Noah Fiedel},
    year    = {2022}
}
Comments
  • PerceiverResampler missing some LayerNorms?

    PerceiverResampler missing some LayerNorms?

    Hey, it feels like PerceiverResampler is missing some LayerNorms? it seems to me we should layer-norm x before sending to attentions loop, and may be add layer-norm to ff(latents) + latents?

    opened by inspirit 7
  • Missing flatten op in PerceiverResampler?

    Missing flatten op in PerceiverResampler?

    Hi, It seems that Flamingo did "x_f = flatten(x_f) # [T, S, d] -> [T * S, d]" (batch size == 1) before putting x_f to attention.

    So, it should be like: medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension) perceived = perceive(medias) # (1, 64, 1024) - (batch, num latents, dimension)

    ??

    opened by zengyan-97 6
  • wrong attention masks?

    wrong attention masks?

    https://github.com/lucidrains/flamingo-pytorch/blob/44920f4191ba3c280ff84c6ebc76025656d1dab5/flamingo_pytorch/flamingo_pytorch.py#L159

    In the flamingo paper, the language features in the gated cross-attention layers only attend to the visual features from the immediate preceding image. I believe your attention masks are created in such a way that they attend to the visual features from all preceding images. Can you confirm? If so, a fix would be to simply change the '>=' to '=='.

    opened by dhansmair 4
  • zeroing out attention not working

    zeroing out attention not working

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_pytorch.py#L179

    you are not using the inplace version of the function: https://pytorch.org/docs/stable/generated/torch.Tensor.masked_fill_.html#torch.Tensor.masked_fill_

    so I think this line does not have an effect.

    Best, David

    opened by dhansmair 2
  • Applying parallel attn with ff to existing pretrained model?

    Applying parallel attn with ff to existing pretrained model?

    Hi - awesome work! I am trying to understand ? I couldn't find a paper - only a reference to https://github.com/kingoflolz/mesh-transformer-jax. Is this right? Am I understanding that it is bascially applying multiple operations of for qkv and ff at once? Is it possible to use this trick to modify an existing pretrained model?

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_palm.py#L90

    Many thanks in advance!

    Huu

    opened by ontocord 1
  • How to use Flamingo for VQA task?

    How to use Flamingo for VQA task?

    Hi, Thanks for sharing this awesome implementation. I am very interested in using Flamingo model for my usecase. How I can use this implementation to get inference on my dataset for VQA task? I have certain images of products and want extract some information image of product by questioning it. How I can do it ?

    Please help.

    thanks

    opened by karndeepsingh 0
  • Fine-tuning of a model

    Fine-tuning of a model

    Hi, Thank you for this great work. I want to ask how can I fine-tune this model on my dataset for some downstream task like image captioning or image classification? If it is possible for you can you also please share the code?

    opened by ans92 0
  • Need a sample ipython notebook

    Need a sample ipython notebook

    Hello, @lucidrains,

    Thank you for providing this.

    For demo purposes, could you please provide a sample demo in Jupyter notebook?🫠

    Best, LITDataScience

    opened by LITDataScience 0
Releases(0.1.2)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022