Parris, the automated infrastructure setup tool for machine learning algorithms.

Related tags

Deep LearningParris
Overview

README

Parris Icon

Parris, the automated infrastructure setup tool for machine learning algorithms.

What Is This Tool?

Parris is a tool for automating the training of machine learning algorithms. If you're the kind of person that works on ML algorithms and spends too much time setting up a server to run it on, having to log into it to monitor its progress, etc., then you will find this tool helpful. No need to SSH into instances to get your training jobs done!

Setup

You'll need an AWS account, AWS credentials loaded to your workstation (set up through $ aws configure), a machine learning algorithm to train, and of course a dataset that it can be trained on. You'll also likely want an S3 bucket or some other storage location for your algorithm's training results.

UNIX/Linux:

$ git clone https://github.com/jgreenemi/parris.git && cd parris
$ virtualenv -p python3 env
$ source env/bin/activate
(env) $ pip --version
pip 9.0.1 from .../env/lib/python3.6/site-packages (python 3.6)
(env) $ pip install -r requirements.txt 

Windows:

$ git clone https://github.com/jgreenemi/parris.git && cd parris
$ virtualenv -p python3.exe env
$ env\Scripts\activate
(env) $ pip --version
pip 9.0.1 from ...\python\python36\lib\site-packages (python 3.6)
(env) $ pip install -r requirements.txt 

How To Use

To use Parris, follow the Getting Started guide which will take you from setup all the way to launching your first ML training stack. While getting familiar with the tool you'll also want to consult the Configuration guide to better understand what options are available to you. This will help a lot in conjunction with the Getting Started guide.

FAQ

Consult the FAQ page in the documentation as many questions are answered there. If your question was not answered, please get in touch, either via a new Github Issue (preferred) or via an email below. The former is preferred as others with the same question can benefit from seeing the answer posted publicly.

Contributions

This tool is an open source project released under the Apache 2.0 license. Contributions from the community are more than welcome! Do consult the Issues page for known feature requests, roadmap items, and bugs you can work on.

Contact

Owner
Joseph Greene
I work on machine learning and software development challenges. Python, Kotlin. Formerly Amazon Halo, Amazon Go, and AWS!
Joseph Greene
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN โ €โ €โ € A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | ็ฎ€ไฝ“ไธญๆ–‡ | ็น้ซ”ไธญๆ–‡ | ํ•œ๊ตญ์–ด State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow ๐Ÿค— Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matรฉrn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022