TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

Related tags

Deep Learningautodsp
Overview

AutoDSP

TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

autodsp

About

Adaptive filtering algorithms are commonplace in signal processing and have wide-ranging applications from single-channel denoising to multi-channel acoustic echo cancellation and adaptive beamforming. Such algorithms typically operate via specialized online, iterative optimization methods and have achieved tremendous success, but require expert knowledge, are slow to develop, and are difficult to customize. In our work, we present a new method to automatically learn adaptive filtering update rules directly from data. To do so, we frame adaptive filtering as a differentiable operator and train a learned optimizer to output a gradient descent-based update rule from data via backpropagation through time. We demonstrate our general approach on an acoustic echo cancellation task (single-talk with noise) and show that we can learn high-performing adaptive filters for a variety of common linear and non-linear multidelayed block frequency domain filter architectures. We also find that our learned update rules exhibit fast convergence, can optimize in the presence of nonlinearities, and are robust to acoustic scene changes despite never encountering any during training.

arXiv: https://arxiv.org/abs/2110.04284

pdf: https://arxiv.org/pdf/2110.04284.pdf

Short video: https://www.youtube.com/watch?v=y51hUaw2sTg

Full video: https://www.youtube.com/watch?v=oe0owGeCsqI

Table of contents

Setup

Clone repo

git clone 
   
    
cd autodsp

   

Get The Data

# Install Git LFS if needed
git lfs install

# Move into folder that is one above 
   
    
cd 
    
     /../

# Clone MS data
git clone https://github.com/microsoft/AEC-Challenge AEC-Challenge


    
   

Configure Environment

First, edit the config file to point to the dataset you downloaded.

vim ./autodsp/__config__.py

Next, setup your anaconda environment

# Create a conda environment
conda create -n autodsp python=3.7

# Activate the environment
conda activate autodsp

# Install some tools
conda install -c conda-forge cudnn pip

# Install JAX
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html

# Install Haiku
pip install git+https://github.com/deepmind/dm-haiku

# Install pytorch for the dataloader
conda install pytorch cpuonly -c pytorch

You can also check out autodsp.yaml, the export from our conda environment. We found the most common culprit for jax or CUDA errors was a CUDA/cuDNN version mismatch. You can find more details on this in the jax official repo https://github.com/google/jax.

Install AutoDSP

cd autodsp
pip install -e ./

This will automatically install the dependeicies in setup.py.

Running an Experiment

# move into the experiment directory
cd experiments

The entry point to train and test models is jax_run.py. jax_run.py pulls configuration files from jax_train_config.py. The general format for launching a training run is

python jax_run.py --cfg 
   
     --GPUS 
     

    
   

where is a config specified in jax_train_config.py, is something like 0 1. You can automatically send logs to Weights and Biases by appending --wandb. This run will automatically generate a /ckpts/ directory and log checkpoints to it. You can grab a checkpoint and run it on the test set via

python jax_run.py --cfg 
   
     --GPUS 
    
      --epochs 
     
       --eval 

     
    
   

where is the same as training and is a single epoch like 100 or a list of epochs like 100, 200, 300. Running evaluation will also automatically dump a .pkl file with metrics in the same directory as the checkpoint.

An explicit example is

# run the training
python jax_run.py --cfg v2_filt_2048_1_hop_1024_lin_1e4_log_24h_10unroll_2deep_earlystop_echo_noise 
                --GPUS 0 1 2 3

# run evaluation on the checkpoint from epoch 100
python jax_run.py --cfg v2_filt_2048_1_hop_1024_lin_1e4_log_24h_10unroll_2deep_earlystop_echo_noise 
                --GPUS 0 --eval --epochs 100

You can find all the configurations from our paper in the jax_train_config.py file. Training can take up to a couple days depending on model size but will automatically stop when it hits the max epoch count or validation performance stops improving.

Copyright and license

University of Illinois Open Source License

Copyright © 2021, University of Illinois at Urbana Champaign. All rights reserved.

Developed by: Jonah Casebeer 1, Nicholas J. Bryan 2 and Paris Smaragdis 1,2

1: University of Illinois at Urbana-Champaign

2: Adobe Research

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal with the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimers in the documentation and/or other materials provided with the distribution. Neither the names of Computational Audio Group, University of Illinois at Urbana-Champaign, nor the names of its contributors may be used to endorse or promote products derived from this Software without specific prior written permission. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

Owner
Jonah Casebeer
CS Ph.D. student at UIUC
Jonah Casebeer
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022