A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

Overview

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

This is the pytorch implementation for our MICCAI 2021 paper.

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis
Jiarong Ye, Yuan Xue, Peter Liu, Richard Zaino, Keith C. Cheng, Xiaolei Huang
paper (MICCAI 2021 Poster) video

Abstract: Generative models have been applied in the medical imaging domain for various image recognition and synthesis tasks. However, a more controllable and interpretable image synthesis model is still lacking yet necessary for important applications such as assisting in medical training. In this work, we leverage the efficient self-attention and contrastive learning modules and build upon state-of-the-art generative adversarial networks (GANs) to achieve an attribute-aware image synthesis model, termed AttributeGAN, which can generate high-quality histopathology images based on multi-attribute inputs. In comparison to existing single-attribute conditional generative models, our proposed model better reflects input attributes and enables smoother interpolation among attribute values. We conduct experiments on a histopathology dataset containing stained H&E images of urothelial carcinoma and demonstrate the effectiveness of our proposed model via comprehensive quantitative and qualitative comparisons with state-of-the-art models as well as different variants of our model.

Keywords: Histopathology image synthesis, Attribute-aware conditional generative model, Conditional contrastive learning

Architecture

AttributeGAN Architecture

Usage

Environment

  • Python >= 3.6
  • Pytorch 1.9.1
  • CUDA 10.2

Dependencies:

Install the dependencies:

pip install -r requirements.txt

Datasets

Dataset download link: nmi-wsi-diagnosis

Training

python run.py

Visualization

Tensorboard monitoring

tensorboard --logdir saved_models/histology --port 
   

   

Generate images

Download the pre-trained model to the pretrain_model directory: Google Drive Link

python generate.py

Acknowledgment

  • Dataset credit:
@article{zhang2019pathologist,
  title={Pathologist-level interpretable whole-slide cancer diagnosis with deep learning},
  author={Zhang, Zizhao and Chen, Pingjun and McGough, Mason and Xing, Fuyong and Wang, Chunbao and Bui, Marilyn and Xie, Yuanpu and Sapkota, Manish and Cui, Lei and Dhillon, Jasreman and others},
  journal={Nature Machine Intelligence},
  volume={1},
  number={5},
  pages={236--245},
  year={2019},
  publisher={Nature Publishing Group}
}
@inproceedings{liu2020towards,
  title={Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis},
  author={Liu, Bingchen and Zhu, Yizhe and Song, Kunpeng and Elgammal, Ahmed},
  booktitle={International Conference on Learning Representations},
  year={2020}
}

Citation

If you find our work useful in your research, please cite our paper:

@inproceedings{Ye2021AMC,
  title={A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis},
  author={Jiarong Ye and Yuan Xue and Peter Xiaoping Liu and Richard J. Zaino and Keith C. Cheng and Xiaolei Huang},
  booktitle={MICCAI},
  year={2021}
}
Owner
Jiarong Ye
Jiarong Ye
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022