Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Overview

Reconstruct handwritten characters from brains using GANs

Example code for the paper "Generative adversarial networks for reconstructing natural images from brain activity".

Method for reconstructing images from brain activity with GANs. You need a GAN that is trained for reproducing the target distribution (images that look like your stimuli) and a differentiable method for doing perceptual feature matching (here: layer activations of a convolutional neural network).

The method uses linear regression implemented as a neural network to predict the latent space z. Losses are calculated in image space and backpropagated through the loss terms and the GAN over z to the weights of the linear regression layer.

Usage notes

... for the handwritten characters example:

  1. Run train_linear_model.py, preferably on a GPU. This will produce ./recon/finalZ.mat which contains z predictions on your validation set.

  2. Run reconstruct_from_z.py to generate a PNG with reconstructions of the validation data in ./recon/recons.png.

... for your own data:

  1. Train a GAN for your stimulus domain (e.g. natural grayscale images of size [64 64]). During training z should be drawn from a uniform distribution in [-1 1] and normalized (see sample_z() in model_dcgan_G.py).

  2. Train a differentiable network for feature matching. The training code for the AlexNet used for handwritten digits can be found in ./featurematching/train_featurematching_handwritten.py.

  3. Adapt some parameters in args.py and train_linear_model.py (and hopefully little of the rest). Fine-tune the weights for the loss terms on an isolated data set.

  4. You should be able to just run train_linear_model.py then.

Requirements

  • Anaconda Python 2.7 version

  • chainer version 1.24 (install via: pip install chainer==1.24 --no-cache-dir -vvvv)

  • A GPU for training the feature matching network

Usage conditions

If you publish using this code or use it in any other way, please cite:

Seeliger, K., Güçlü, U., Ambrogioni, L., Güçlütürk, Y., & van Gerven, M. A. J. (2018). Generative adversarial networks for reconstructing natural images from brain activity. NeuroImage.

Please notify the corresponding author in addition.

Owner
K. Seeliger
K. Seeliger
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
Abhijith Neil Abraham 2 Nov 05, 2021
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.

Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. C

Raphael Sourty 224 Nov 29, 2022