A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Overview

Telemanom (v2.0)

v2.0 updates:

  • Vectorized operations via numpy
  • Object-oriented restructure, improved organization
  • Merge branches into single branch for both processing modes (with/without labels)
  • Update requirements.txt and Dockerfile
  • Updated result output for both modes
  • PEP8 cleanup

Anomaly Detection in Time Series Data Using LSTMs and Automatic Thresholding

License

Telemanom employs vanilla LSTMs using Keras/Tensorflow to identify anomalies in multivariate sensor data. LSTMs are trained to learn normal system behaviors using encoded command information and prior telemetry values. Predictions are generated at each time step and the errors in predictions represent deviations from expected behavior. Telemanom then uses a novel nonparametric, unsupervised approach for thresholding these errors and identifying anomalous sequences of errors.

This repo along with the linked data can be used to re-create the experiments in our 2018 KDD paper, "Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding", which describes the background, methodologies, and experiments in more detail. While the system was originally deployed to monitor spacecraft telemetry, it can be easily adapted to similar problems.

Getting Started

Clone the repo (only available from source currently):

git clone https://github.com/khundman/telemanom.git && cd telemanom

Configure system/modeling parameters in config.yaml file (to recreate experiment from paper, leave as is). For example:

  • train: True if True, a new model will be trained for each input stream. If False (default) existing trained model will be loaded and used to generate predictions
  • predict: True Generate new predictions using models. If False (default), use existing saved predictions in evaluation (useful for tuning error thresholding and skipping prior processing steps)
  • l_s: 250 Determines the number of previous timesteps input to the model at each timestep t (used to generate predictions)

To run via Docker:

docker build -t telemanom .

# rerun experiment detailed in paper or run with your own set of labeled anomlies in 'labeled_anomalies.csv'
docker run telemanom -l labeled_anomalies.csv

# run without labeled anomalies
docker run telemanom

To run with local or virtual environment

From root of repo, curl and unzip data:

curl -O https://s3-us-west-2.amazonaws.com/telemanom/data.zip && unzip data.zip && rm data.zip

Install dependencies using python 3.6+ (recommend using a virtualenv):

pip install -r requirements.txt

Begin processing (from root of repo):

# rerun experiment detailed in paper or run with your own set of labeled anomlies
python example.py -l labeled_anomalies.csv

# run without labeled anomalies
python example.py

A jupyter notebook for evaluating results for a run is at telemanom/result_viewer.ipynb. To launch notebook:

jupyter notebook telemanom/result-viewer.ipynb

Plotly is used to generate interactive inline plots, e.g.:

drawing2

Data

Using your own data

Pre-split training and test sets must be placed in directories named data/train/ and data/test. One .npy file should be generated for each channel or stream (for both train and test) with shape (n_timesteps, n_inputs). The filename should be a unique channel name or ID. The telemetry values being predicted in the test data must be the first feature in the input.

For example, a channel T-1 should have train/test sets named T-1.npy with shapes akin to (4900,61) and (3925, 61), where the number of input dimensions are matching (61). The actual telemetry values should be along the first dimension (4900,1) and (3925,1).

Raw experiment data

The raw data available for download represents real spacecraft telemetry data and anomalies from the Soil Moisture Active Passive satellite (SMAP) and the Curiosity Rover on Mars (MSL). All data has been anonymized with regard to time and all telemetry values are pre-scaled between (-1,1) according to the min/max in the test set. Channel IDs are also anonymized, but the first letter gives indicates the type of channel (P = power, R = radiation, etc.). Model input data also includes one-hot encoded information about commands that were sent or received by specific spacecraft modules in a given time window. No identifying information related to the timing or nature of commands is included in the data. For example:

drawing

This data also includes pre-split test and training data, pre-trained models, predictions, and smoothed errors generated using the default settings in config.yaml. When getting familiar with the repo, running the result-viewer.ipynb notebook to visualize results is useful for developing intuition. The included data also is useful for isolating portions of the system. For example, if you wish to see the effects of changes to the thresholding parameters without having to train new models, you can set Train and Predict to False in config.yaml to use previously generated predictions from prior models.

Anomaly labels and metadata

The anomaly labels and metadata are available in labeled_anomalies.csv, which includes:

  • channel id: anonymized channel id - first letter represents nature of channel (P = power, R = radiation, etc.)
  • spacecraft: spacecraft that generated telemetry stream
  • anomaly_sequences: start and end indices of true anomalies in stream
  • class: the class of anomaly (see paper for discussion)
  • num values: number of telemetry values in each stream

To provide your own labels, use the labeled_anomalies.csv file as a template. The only required fields/columns are channel_id and anomaly_sequences. anomaly_sequences is a list of lists that contain start and end indices of anomalous regions in the test dataset for a channel.

Dataset and performance statistics:

Data

SMAP MSL Total
Total anomaly sequences 69 36 105
Point anomalies (% tot.) 43 (62%) 19 (53%) 62 (59%)
Contextual anomalies (% tot.) 26 (38%) 17 (47%) 43 (41%)
Unique telemetry channels 55 27 82
Unique ISAs 28 19 47
Telemetry values evaluated 429,735 66,709 496,444

Performance (with default params specified in paper)

Spacecraft Precision Recall F_0.5 Score
SMAP 85.5% 85.5% 0.71
Curiosity (MSL) 92.6% 69.4% 0.69
Total 87.5% 80.0% 0.71

Processing

Each time the system is started a unique datetime ID (ex. 2018-05-17_16.28.00) will be used to create the following

  • a results file (in results/) that extends labeled_anomalies.csv to include identified anomalous sequences and related info
  • a data subdirectory containing data files for created models, predictions, and smoothed errors for each channel. A file called params.log is also created that contains parameter settings and logging output during processing.

As mentioned, the jupyter notebook telemanom/result-viewer.ipynb can be used to visualize results for each stream.

Citation

If you use this work, please cite:

  title={Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding},
  author={Hundman, Kyle and Constantinou, Valentino and Laporte, Christopher and Colwell, Ian and Soderstrom, Tom},
  journal={arXiv preprint arXiv:1802.04431},
  year={2018}
}

License

Telemanom is distributed under Apache 2.0 license.

Contact: Kyle Hundman ([email protected])

Contributors

Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023