Implementation of Nyström Self-attention, from the paper Nyströmformer

Overview

Nyström Attention

Implementation of Nyström Self-attention, from the paper Nyströmformer.

Yannic Kilcher video

Install

$ pip install nystrom-attention

Usage

import torch
from nystrom_attention import NystromAttention

attn = NystromAttention(
    dim = 512,
    dim_head = 64,
    heads = 8,
    num_landmarks = 256,    # number of landmarks
    pinv_iterations = 6,    # number of moore-penrose iterations for approximating pinverse. 6 was recommended by the paper
    residual = True         # whether to do an extra residual with the value or not. supposedly faster convergence if turned on
)

x = torch.randn(1, 16384, 512)
mask = torch.ones(1, 16384).bool()

attn(x, mask = mask) # (1, 16384, 512)

Nyströmformer, layers of Nyström attention

import torch
from nystrom_attention import Nystromformer

model = Nystromformer(
    dim = 512,
    dim_head = 64,
    heads = 8,
    depth = 6,
    num_landmarks = 256,
    pinv_iterations = 6
)

x = torch.randn(1, 16384, 512)
mask = torch.ones(1, 16384).bool()

model(x, mask = mask) # (1, 16384, 512)

You can also import it as Nyströmer if you wish

from nystrom_attention import Nystromer

Citations

@misc{xiong2021nystromformer,
    title   = {Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention},
    author  = {Yunyang Xiong and Zhanpeng Zeng and Rudrasis Chakraborty and Mingxing Tan and Glenn Fung and Yin Li and Vikas Singh},
    year    = {2021},
    eprint  = {2102.03902},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
Comments
  • Clarification on masking

    Clarification on masking

    Given the dimensionality of the mask argument, (N, T), I'm assuming this is a boolean mask for masking out padding tokens. I created the following function to generate such a mask given an input tensor:

    def _create_pad_mask(self, x: torch.LongTensor) -> torch.BoolTensor:
        mask = torch.ones_like(x).to(torch.bool)
        mask[x==0] = False
        return mask
    

    where 0 is the padding token, setting positions to False so not to attend to them.

    However, I am unsure how to apply a causal mask to the attention layers so to prevent my decoder from accessing future elements. I couldn't see an example of this in the full Nystromformer module. How can I achieve this?

    For context, I am trying to apply the causal mask generated by the following function:

    def _create_causal_mask(self, x: torch.LongTensor) -> torch.FloatTensor:
        size = x.shape[1]
        mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill_(mask == 0, float('-inf')).masked_fill_(mask==1, 0.0)
        return mask
    

    One way I can think of is to set return_attn to True, apply the mask on the returned attention weights then matmul with the value tensor. But this has a few issues:

    • Having to return v
    • Computing the full attention matrix (I think), defeating the entire point of linear attention
    • Needlessly calculating out only to discard it.

    Is this just a limitation of Nystrom attention? Or am I overlooking something obvious?

    Thanks

    opened by vvvm23 3
  • Possible bug with padding

    Possible bug with padding

    Hey there,

    I was going through the code and I noticed the following, which I found curious.

    In Line 75, you pad the input tensor to a multiple of num_landmarks from the front:

    x = F.pad(x, (0, 0, padding, 0), value = 0)
    

    In Line 144 you trim the extra padding elements you inserted in the output tensor from the end.

    out = out[:, :n]
    

    Am I not getting something, or should we be removing the front elements of out?

    out = out[:, out.size(1) - n:]
    
    opened by georgepar 2
  • Nystrom for Image processing

    Nystrom for Image processing

    thank you for sharing the wondeful code. I am working on image processing and wanted to try your code for the same. I have 2 doubts:

    1. How to select residual_conv_kernel? I could not find any details for the same. also, it is enabled by a flag. When should we enable it and when to disable it?
    2. Is there any guideline for deciding num_landmarks for image processing task?

    Thanks

    opened by paragon1234 1
  • Error when mask is of the same size as that of the input X

    Error when mask is of the same size as that of the input X

    Hi,

    First of all, thank you for putting such an easy to use implementation on GitHub. I'm trying to incorporate the nystrom attention into a legacy codebase, it previously used to provide the input X and the mask (off the same dimensions as X) to a Multi headed Attention Layer.

    When I'm trying to integrate nystrom attention with it, it runs alright without the mask. But, when I pass the mask alongside it, it throws einops rearrange error.

    Sorry, if this is a very basic question, but how would you recommend I deal with handling 3D mask (same dimensions as the size of input) in the codebase.

    Best, VB

    opened by Vaibhavs10 1
  • ViewBackward inplace deprecation warning

    ViewBackward inplace deprecation warning

    Hello again,

    The following code results in a UserWarning in PyTorch 1.8.1.

    In [1]: from nystrom_attention.nystrom_attention import NystromAttention
    
    In [2]: import torch
    
    In [3]: attn = NystromAttention(256)
    
    In [4]: x = torch.randn(1, 8192, 256)
    
    In [5]: attn(x)
    /home/alex/.tmp/nystrom-attention/nystrom_attention/nystrom_attention.py:91: UserWarning: Output 0 of ViewBackward is a view and is being modified inplace. This view is an output of a function that returns multiple views. Inplace operators on such views are being deprecated and will be forbidden starting from version 1.8. Consider using `unsafe_` version of the function that produced this view or don't modify this view inplace. (Triggered internally at  ../torch/csrc/autograd/variable.cpp:547.)
      q *= self.scale
    Out[5]:
    tensor([[[-0.0449, -0.1726,  0.1409,  ...,  0.0127,  0.2287, -0.2437],
             [-0.1132,  0.3229, -0.1279,  ...,  0.0084, -0.3307, -0.2351],
             [ 0.0361,  0.1013,  0.0828,  ...,  0.1045, -0.1627,  0.0736],
             ...,
             [ 0.0018,  0.1385, -0.1716,  ..., -0.0366, -0.0682,  0.0241],
             [ 0.1497,  0.0149, -0.0020,  ..., -0.0352, -0.1126,  0.0193],
             [ 0.1341,  0.0077,  0.1627,  ..., -0.0363,  0.1057, -0.2071]]],
           grad_fn=<SliceBackward>)
    

    Not a huge issue, but worth mentioning

    opened by vvvm23 1
  • Relative position encoding

    Relative position encoding

    Similar to the question raised for the performer architecture , is it possible to implement a relative position encoding given the methodology in which attention is calculated?

    opened by jdcla 1
  • How can we implement

    How can we implement "batch_first" in Nystrom attention?

    Hi,

    Thanks a lot for implementing the nystromformer attention algorithm! Very nice job!

    I am wondering whether it is feasible to add the "batch_first" option in the nystrom attention algorithm? This allow the algorithm to be integrated in the existing pytorch transformer encoder architecture.

    opened by mark0935git 0
  • x-transformers

    x-transformers

    Hi @lucidrains - just wondering if we can plug in Nystrom Attention with x-transformers?

    I've been plugging in Vision Transformers with X-transformers but am wondering if its possible to have a Nystrom transformer with x-transformer improvements to plug into a ViT?

    opened by robbohua 0
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022