Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

Overview

VMAgent LOGO

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month real VM scheduling dataset called Huawei-East-1 from HUAWEI Cloud and it contains multiple practicle VM scheduling scenarios (such as Fading, Rcovering, etc). These scenarios also correspond to the challanges in the RL. Exploiting the design of RL methods in these secenarios help both the RL and VM scheduling communities. To emphasis, more details about VMAgent can be found in our paper VMAgent: Scheduling Simulator for Reinforcement Learning. Our another paper Learning to Schedule Multi-NUMA Virtual Machines via Reinforcement Learning has employed this VMAgent simultor to design RL-based VM scheduling algorithms.

Key Components of VMAgent:

  • SchedGym (Simulator): it provides many practical scenarios and flexible configurations to define custom scenarios.
  • SchedAgent (Algorithms): it provides many popular RL methods as the baselines.
  • SchedVis (Visulization): it provides the visualization of schedlueing dynamics on many metrics.

Scenarios and Baselines

The VMAgent provides multiple practical scenarios:

Scenario Allow-Deletion Allow-Expansion Server Num
Fading False False Small
Recovering True False Small
Expanding True True Small
Recovering-L True False Large

Researchers can also flexibly customized their scenarios in the vmagent/config/ folder.

Besides, we provides many baselines for quick startups. It includes FirstFit, BestFit, DQN, PPO, A2C and SAC. More baselines is coming.

Installation

git clone [email protected]:mail-ecnu/VMAgent.git
cd VMAgent
conda env create -f conda_env.yml
conda activate VMAgent-dev
python3 setup.py develop

Quick Examples

In this quick example, we show how to train a dqn agent in a fading scenario. For more examples and the configurations' concrete definitions, we refer readers to our docs.

config/fading.yaml:

N: 5
cpu: 40 
mem: 90
allow_release: False

config/algs/dqn.yaml:

mac: 'vectormac'
learner: 'q_learner'
agent: 'DQNAgent'

Then

python train.py --env=fading --alg=dqn

It provides the first VM scheudling simulator based on the one month east china data in HUAWEI Cloud. It includes three scenarios in practical cloud: Recovering, Fading and Expansion. Our video is at video. Some demonstrations are listed:

Docs

For more information of our VMAgent, we refer the readers to the document. It describes the detail of SchedGym, SchedAgent and SchedVis.

Data

We collect one month scheduling data in east china region of huawei cloud. The format and the stastical analysis of the data are presented in the docs. one month east china data in huawei cloud.

Visualization

For visualization, see the schedvis directory in detail.

References

  • Junjie Sheng, Shengliang Cai, Haochuan Cui, Wenhao Li, Yun Hua, Bo Jin, Wenli Zhou, Yiqiu Hu, Lei Zhu, Qian Peng, Hongyuan Zha and Xiangfeng Wang, VMAgent: Scheduling Simulator for Reinforcement Learning. arXiv preprint arXiv:2112.04785, 2021.
  • Junjie Sheng, Yiqiu Hu, Wenli Zhou, Lei Zhu, Bo Jin, Jun Wang and Xiangfeng Wang, Learning to Schedule Multi-NUMA Virtual Machines via Reinforcement Learning, Pattern Recognition, 121, 2021, pp.108254.

License

Licensed under the MIT License.

Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022