Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Overview

Sign Language Recognition Service

This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition. The service was developed as a part of a bachelor project at Aalborg University.

alt text

Requirements

  • Python 3.7
  • OpenPose 1.6.0
  • CUDA 10.0
  • cuDNN 7.5.0
  • Numpy 1.18.5
  • OpenCV 4.5.1.48
  • Flask 1.1.2
  • Tensorflow 2.0.0
  • Pandas 1.1.5
  • Tensorboard
  • Matplotlib
  • Seaborn
  • Scikit-Learn

How to use

Installing OpenPose

  1. Please install OpenPose 1.6.0 for Python by following the official guide. Note that the newest release on the OpenPose github is 1.7.0 - for this service to work, 1.6.0 must be used.

    A few things to note when installing OpenPose:

    • When cloning the OpenPose repository, use the following git command to get version 1.6.0:
      git clone --depth 1 --branch v1.6.0 https://github.com/CMU-Perceptual-Computing-Lab/openpose
      
    • Remember to run the following command on the newly cloned repository:
      git submodule update --init --recursive --remote
      
    • Use Visual Studio Enterprise 2017 to build the required files. Install this first if you do not already have it.
    • Install CUDA 10.0 and cuDNN 7.5.0 for CUDA 10.0 after installing Visual Studio Enterprise 2017.
    • When generating the files using CMake, make sure that the BUILD_PYTHON flag is enabled, and that the Python version is set to 3.7. Also make sure that the detected CUDA version is 10.0.
    • After building with Visual Studio Enterprise 2017, make sure that all necessary files have been generated.
      • There should be a openpose.dll in /x64/Release/
      • There should be a openpose.exp and openpose.lib in /src/openpose/Release/
      • There should be a pyopenpose.cp37-win_amd64.pyd in /python/openpose/Release/
  2. Install requirements from requirements.txt

  3. Change the path in main/openpose/paths.py to the path of your OpenPose installation:

    # Change this path so it points to your OpenPose path relative to this file
    OPEN_POSE_PATH = get_relative_path(__file__, '../../../../openpose')
    
  4. If you get any errors related to OpenPose when running the service, please go back and make sure that all instructions have been followed - be particularly careful to install the correct CUDA/cuDNN versions, make sure that the BUILD_PYTHON flag was enabled and that Python 3.7 was used when generating the files.

When OpenPose is successfully installed, you can either use the existing model trained on our dataset, or you can choose to make your own dataset and train a model on this instead.

alt text

Using the service

A singular endpoint '/recognize' has been created in order to perform recognition, which allows for POST requests to be made. The endpoint expects a sequence of base64 images, which will get converted into a suitable format recognizable by the classifier.

alt text

alt text

Creating a custom dataset

In order to create a custom dataset, you can access the file create_dataset.py and change the following constant:

DATASET_NAME = 'dsl_dataset'

Such that the path in the constant DATASET_DIR points to a folder where the dataset is located. This folder should contain another folder called 'src', which contains folders for all the desired labels in the dataset. Each of these folders should contain videos of the corresponding sign.

Before running the script, the following constants can be tweaked based on the desired settings:

WINDOW_LENGTH = 60
STRIDE = 5
BATCH_SIZE = 512
VAL_SPLIT = 0.2
TEST_SPLIT = 0.1

Finally, the following constant can be changed:

CREATE_RAW_DATA = True

This is because initial feature extraction by OpenPose can be a fairly lengthy process. This allows for the tweaking of the dataset after features have been extracted, by setting this to False. Note that the raw OpenPose data must be created before the actual dataset can be created, so it is necessary to do this at least once.

Training a custom model

In order to train a custom model you can make use of the train_models.py file. Here, the constant DATASET_NAME can be changed to reflect the name of the dataset you wish to use, such that the DATASET_DIR points to the correct folder. Furthermore, you can specify a tensorboard directory:

DATASET_NAME = 'dsl_dataset'
DATASET_DIR = f'.\\main\\algorithm\\datasets\\{DATASET_NAME}'
MODELS_DIR = f'.\\main\\algorithm\\models\\{DATASET_NAME}'
TENSORBOARD_DIR = f'{MODELS_DIR}\\logs'

Before running the script, you can tweak various training settings as well as the hyper parameters of the model by changing the following constants:

MODEL_NAME = "model"
EPOCHS = 25
LAYER_SIZES = [64]
DENSE_LAYERS = [0]
DENSE_ACTIVATION = "relu"
LSTM_LAYERS = [2]
LSTM_ACTIVATION = "tanh"
OUTPUT_ACTIVATION = "softmax"

Note that the trainer can train multiple models depending on these settings. Changing the LAYER_SIZES, DENSE_LAYERS and LSTM_LAYERS to contain several values will result in a model being trained for each possible combination.

After training your model, you should change the paths.py located in main/core/ to reflect the path to the new model by changing the constant MODEL_NAME to the name of your model:

MODEL_NAME = 'dsl_lstm.model'

Finally, it also possible to generate a confusion matrix for your model by using the generate_confusion_matrix.py script. Here, you simply change the constants DATASET_NAME and MODEL_NAME such that the DATASET_DIR points to your dataset directory, and MODEL_DIR points to your model directory, respectively:

DATASET_NAME = "dsl_dataset"
MODEL_NAME = "dsl_lstm"
DATASET_DIR = f"./main/algorithm/datasets/{DATASET_NAME}/{DATASET_NAME}.pickle"
MODEL_DIR = f"./main/algorithm/models/{DATASET_NAME}/{MODEL_NAME}"

Happy signing :O)

Authors

  • Adil Cemalovic
  • Martin Lønne
  • Magnus Helleshøj Lund
Owner
Martin Lønne
Full-stack software developer with an interest in Cloud development. Is working most with Javascript, C#, and Python for machine learning.
Martin Lønne
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
Satoshi is a discord bot template in python using discord.py that allow you to track some live crypto prices with your own discord bot.

Satoshi ~ DiscordCryptoBot Satoshi is a simple python discord bot using discord.py that allow you to track your favorites cryptos prices with your own

Théo 2 Sep 15, 2022
Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and limited )

GTA-5-Lane-detection Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and

Danciu Georgian 4 Aug 01, 2021
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
One Metrics Library to Rule Them All!

onemetric Installation Install onemetric from PyPI (recommended): pip install onemetric Install onemetric from the GitHub source: git clone https://gi

Piotr Skalski 49 Jan 03, 2023
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022
Hand gesture detection project with aweome UI implementation.

an awesome hand gesture detection project for you to be creative! Imagination is the limit to do with this project.

AR Ashraf 39 Sep 26, 2022
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022
Scene text detection and recognition based on Extremal Region(ER)

Scene text recognition A real-time scene text recognition algorithm. Our system is able to recognize text in unconstrain background. This algorithm is

HSIEH, YI CHIA 155 Dec 06, 2022
A Python script to capture images from multiple webcams at once and save them into your local machine

Capturing multiple images at once from Webcam Using OpenCV Capture multiple image by accessing the webcam of your system and save it to your machine.

Fazal ur Rehman 2 Apr 16, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
Here use convulation with sobel filter from scratch in opencv python .

Here use convulation with sobel filter from scratch in opencv python .

Tamzid hasan 2 Nov 11, 2021