A Python package for generating concise, high-quality summaries of a probability distribution

Overview

GoodPoints

A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints is a collection of tools for compressing a distribution more effectively than independent sampling:

  • Given an initial summary of n input points, kernel thinning returns s << n output points with comparable integration error across a reproducing kernel Hilbert space
  • Compress++ reduces the runtime of generic thinning algorithms with minimal loss in accuracy

Installation

To install the goodpoints package, use the following pip command:

pip install goodpoints

Getting started

The primary kernel thinning function is thin in the kt module:

from goodpoints import kt
coreset = kt.thin(X, m, split_kernel, swap_kernel, delta=0.5, seed=123, store_K=False)
    """Returns kernel thinning coreset of size floor(n/2^m) as row indices into X
    
    Args:
      X: Input sequence of sample points with shape (n, d)
      m: Number of halving rounds
      split_kernel: Kernel function used by KT-SPLIT (typically a square-root kernel, krt);
        split_kernel(y,X) returns array of kernel evaluations between y and each row of X
      swap_kernel: Kernel function used by KT-SWAP (typically the target kernel, k);
        swap_kernel(y,X) returns array of kernel evaluations between y and each row of X
      delta: Run KT-SPLIT with constant failure probabilities delta_i = delta/n
      seed: Random seed to set prior to generation; if None, no seed will be set
      store_K: If False, runs O(nd) space version which does not store kernel
        matrix; if True, stores n x n kernel matrix
    """

For example uses, please refer to the notebook examples/kt/run_kt_experiment.ipynb.

The primary Compress++ function is compresspp in the compress module:

from goodpoints import compress
coreset = compress.compresspp(X, halve, thin, g)
    """Returns Compress++(g) coreset of size sqrt(n) as row indices into X

    Args: 
        X: Input sequence of sample points with shape (n, d)
        halve: Function that takes in an (n', d) numpy array Y and returns 
          floor(n'/2) distinct row indices into Y, identifying a halved coreset
        thin: Function that takes in an (n', d) numpy array Y and returns
          2^g sqrt(n') row indices into Y, identifying a thinned coreset
        g: Oversampling factor
    """

For example uses, please refer to the code examples/compress/construct_compresspp_coresets.py.

Examples

Code in the examples directory uses the goodpoints package to recreate the experiments of the following research papers.


Kernel Thinning

@article{dwivedi2021kernel,
  title={Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2105.05842},
  year={2021}
}
  1. The script examples/kt/submit_jobs_run_kt.py reproduces the vignette experiments of Kernel Thinning on a Slurm cluster by executing examples/kt/run_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb, where in the last code block we report the median heuristic based bandwidth parameteters (along with the code to compute it).
  2. After all results have been generated, the notebook plot_results.ipynb can be used to reproduce the figures of Kernel Thinning.

Generalized Kernel Thinning

@article{dwivedi2021generalized,
  title={Generalized Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2110.01593},
  year={2021}
}
  1. The script examples/gkt/submit_gkt_jobs.py reproduces the vignette experiments of Generalized Kernel Thinning on a Slurm cluster by executing examples/gkt/run_generalized_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb.
  2. Once the coresets are generated, examples/gkt/compute_test_function_errors.ipynb can be used to generate integration errors for different test functions.
  3. After all results have been generated, the notebook examples/gkt/plot_gkt_results.ipynb can be used to reproduce the figures of Generalized Kernel Thinning.

Distribution Compression in Near-linear Time

@article{shetti2021distribution,
  title={Distribution Compression in Near-linear Time},
  author={Abhishek Shetty and Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2111.07941},
  year={2021}
}
  1. The notebook examples/compress/script_to_deploy_jobs.ipynb reproduces the experiments of Distribution Compression in Near-linear Time in the following manner: 1a. It generates various coresets and computes their mmds by executing examples/compress/construct_{THIN}_coresets.py for THIN in {compresspp, kt, st, herding} with appropriate parameters, where the flag kt stands for kernel thinning, st stands for standard thinning (choosing every t-th point), and herding refers to kernel herding. 1b. It compute the runtimes of different algorithms by executing examples/compress/run_time.py. 1c. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb. 1d. The notebook currently deploys these jobs on a slurm cluster, but setting deploy_slurm = False in examples/compress/script_to_deploy_jobs.ipynb will submit the jobs as independent python calls on terminal.
  2. After all results have been generated, the notebook examples/compress/plot_compress_results.ipynb can be used to reproduce the figures of Distribution Compression in Near-linear Time.
  3. The script examples/compress/construct_compresspp_coresets.py contains the function recursive_halving that converts a halving algorithm into a thinning algorithm by recursively halving.
  4. The script examples/compress/construct_herding_coresets.py contains the herding function that runs kernel herding algorithm introduced by Yutian Chen, Max Welling, and Alex Smola.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Özlem Taşkın 0 Feb 23, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022