Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Overview

Drone Detection using Thermal Signature

This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight thermal camera. The work is published in the International Conference of Unmanned Air Systems 2021 (ICUAS 2021) and the paper can be read in detail in ICUAS_2021_paper.

Requirements

The following are the requirements with Python 3.7.7

tensorflow==2.4.0
opencv_contrib_python==4.5.1.48
numpy==1.20.3	

Model Architecture

The following diagram highlights the architecture of model based on YOLOV3. However, unlike typical single image object detection, the model takes in the concatenation of a specified number of images in the past relative to the image of interest. This is to encapsulate the motion of the drone as an input feature for detection, a necessity given that thermal signatures of different are generally globular in shape after a certain distance depending on the fidelity of the thermal camera used. Further details can be found in ICUAS_2021_paper.

Model Architecture

Training and Testing

Clone the repository, adjust the training/testing parameters in train.py as shown and execute the code. The training data comprises of data from a controlled indoor environment while the test data contains a mixture data from indoor and outdoor environments.

# Train options
TRAIN_SAVE_BEST_ONLY        = True # saves only best model according validation loss (True recommended)
TRAIN_CLASSES               = "thermographic_data/classes.txt"
TRAIN_NUM_OF_CLASSES        = len(read_class_names(TRAIN_CLASSES))
TRAIN_MODEL_NAME            = "model_2"
TRAIN_ANNOT_PATH            = "thermographic_data/train" 
TRAIN_LOGDIR                = "log" + '/' + TRAIN_MODEL_NAME
TRAIN_CHECKPOINTS_FOLDER    = "checkpoints" + '/' + TRAIN_MODEL_NAME
TRAIN_BATCH_SIZE            = 4
TRAIN_INPUT_SIZE            = 416
TRAIN_FROM_CHECKPOINT       = False # "checkpoints/yolov3_custom"
TRAIN_LR_INIT               = 1e-4
TRAIN_LR_END                = 1e-6
TRAIN_WARMUP_EPOCHS         = 1
TRAIN_EPOCHS                = 10
TRAIN_DECAY                 = 0.8
TRAIN_DECAY_STEPS           = 50.0

# TEST options
TEST_ANNOT_PATH             = "thermographic_data/validate"
TEST_BATCH_SIZE             = 4
TEST_INPUT_SIZE             = 416
TEST_SCORE_THRESHOLD        = 0.3
TEST_IOU_THRESHOLD          = 0.45

Once the model is trained, you can test the model's predictions on images using detect_image.py. Adjust the the following parameters in detect_image.py and execute the code.

CLASSES               = "thermographic_data/classes.txt"
NUM_OF_CLASSES        = len(read_class_names(CLASSES))
MODEL_NAME            = "model_2"
CHECKPOINTS_FOLDER    = "checkpoints" + "/" + MODEL_NAME
ANNOT_PATH            = "thermographic_data/test/images/pr"
OUTPUT_PATH           = 'predicted_images/' + MODEL_NAME + "/pr"
DETECT_BATCH          = False
DETECT_WHOLE_VID      = True
BATCH_SIZE            = 1804
IMAGE_PATH            = ANNOT_PATH + "/free_3/free_3_frame_100"
INPUT_SIZE            = 416
SCORE_THRESHOLD       = 0.8
IOU_THRESHOLD         = 0.45

Similarly, you can test the model's predictions on videos using detect_video.py. Adjust the following parameters in detect_video.py and execute the code.

CLASSES               = "thermographic_data/classes.txt"
NUM_OF_CLASSES        = len(read_class_names(CLASSES))
MODEL_NAME            = "model_2"
CHECKPOINTS_FOLDER    = "checkpoints" + "/" + MODEL_NAME
ANNOT_PATH            = "raw_videos/free_2.mp4"
OUTPUT_PATH           = 'predicted_videos/' + MODEL_NAME 
INPUT_SIZE            = 416
SCORE_THRESHOLD       = 0.8
IOU_THRESHOLD         = 0.45

Examples of predictions

An example of correct drone detection in indoor environment shown below.

Indoor Detection

An example of correct drone detection in outdoor environment shown below.

Outdoor Prediction

Video of model predictions shown in indoor environment can be found here.

Owner
Chong Yu Quan
Chong Yu Quan
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022