SpanNER: Named EntityRe-/Recognition as Span Prediction

Related tags

Deep LearningSpanNER
Overview

SpanNER: Named EntityRe-/Recognition as Span Prediction

Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination | Bib

This repository contains the code for our paper SpanNER: Named EntityRe-/Recognition as Span Prediction (ACL 2021).

The model designed in this work has been deployed into ExplainaBoard.

Overview

We investigate complementary advantages of systems based on different paradigms: span prediction model and sequence labeling framework. We then reveal that span prediction, simultaneously, can serve as a system combiner to re-recognize named entities from different systems’ outputs. We experimentally implement 154 systems on 11 datasets, covering three languages, comprehensive results show the effectiveness of span prediction models that both serve as base NER systems and system combiners.

d

Demo

We deploy SpanNER into the ExplainaBoard.

Quick Installation

  • python3
  • PyTorch
  • pytorch-lightning

Run the following script to install the dependencies,

pip3 install -r requirements.txt

Data Preprocessing

The dataset needs to be preprocessed, before running the model. We provide dataprocess/bio2spannerformat.py for reference, which gives the CoNLL-2003 as an example. First, you need to download datasets, and then convert them into BIO2 tagging format. We provided the CoNLL-2003 dataset with BIO format in data/conll03_bio folder, and its preprocessed format dataset in data/conll03 folder.

The download links of the datasets used in this work are shown as follows:

Prepare Models

For English Datasets, we use BERT-Large.

For Dutch and Spanish Datasets, we use BERT-Multilingual-Base.

How to Run?

Here, we give CoNLL-2003 as an example. You may need to change the DATA_DIR, PRETRAINED, dataname, n_class to your own dataset path, pre-trained model path, dataset name, and the number of labels in the dataset, respectively.

./run_conll03_spanner.sh

System Combination

Base Model

We provided 12 base models (result-files) of CoNLL-2003 dataset in combination/results. More base model (result-files) can be download from ExplainaBoard-download.

Combination

Put your different base models (result-files) in the data/results folder, then run:

python comb_voting.py

Here, we provided four system combination methods, including:

  • SpanNER,
  • Majority voting (VM),
  • Weighted voting base on overall F1-score (VOF1),
  • Weighted voting base on class F1-score (VCF1).

Results at a Glance

d

Bib

@article{fu2021spanner,
  title={SpanNer: Named Entity Re-/Recognition as Span Prediction},
  author={Fu, Jinlan and Huang, Xuanjing and Liu, Pengfei},
  journal={arXiv preprint arXiv:2106.00641},
  year={2021}
}
Owner
NeuLab
Graham Neubig's Lab at LTI/CMU
NeuLab
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023