BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

Related tags

Text Data & NLPbertac
Overview

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC is a framework that combines a Transformer-based Language Model (TLM) such as BERT with an adversarially pretrained CNN (Convolutional Neural Network). It was proposed in our ACL-IJCNLP paper:

We showed in our experiments that BERTAC can improve the performance of TLMs on GLUE and open-domain QA tasks when using ALBERT or RoBERTa as the base TLM.

This repository provides the source code for BERTAC and adversarially pretrained CNN models described in the ACL-IJCNLP 2021 paper.

You can download the code and CNN models by following the procedure described in the "Try BERTAC section." The procedure includes downloading the BERTAC code, installing libraries required to run the code, and downloading pretrained models of the fastText word embedding vectors, the ALBERT xxlarge model, and our adversarially pretrained CNNs. The CNNs provided here were pretrained using the settings described in our ACL-IJCNLP 2021 paper. They can be downloaded automatically by running the script download_pretrained_model.sh as described in the "Try BERTAC section" or manually from the following page: cnn_models/README.md.

After this is done, you can run the GLUE and Open-domain QA experiments in the ACL-IJCNLP 2021 paper by following the procedure described in these pages, examples/GLUE/README.md and examples/QA/README.md. The procedure for the experiments starts from downloading GLUE and open-domain QA datasets (Quasar-T and SearchQA datasets for open-domain QA) and includes preprocessing the dataset and training/evaluating BERTAC models.

Overview of BERTAC

BERTAC is designed to improve Transformer-based Language Models such as ALBERT and BERT by integrating a simple CNN to them. The CNN is pretrained in a GAN (Generative Adversarial Network) style using Wikipedia data. By using as training data sentences in which an entity was masked in a cloze-test style, the CNN can generate alternative entity representations from sentences. BERTAC aims to improve TLMs for a variety of downstream tasks by using multiple text representations computed from different perspectives, i.e., those of TLMs trained by masked language modeling and those of CNNs trained in a GAN style to generate entity representations.

For a technical description of BERTAC, see our paper:

Try BERTAC

Prerequisites

BERTAC requires the following libraries and tools at runtime.

  • CUDA: A CUDA runtime must be available in the runtime environment. Currently, BERTAC has been tested with CUDA 10.1 and 10.2.
  • Python and Pytorch: BERTAC has been tested with Python 3.6 and 3.8, and Pytorch 1.5.1 and 1.8.1.
  • Perl: BERTAC has been tested with Perl 5.16.1 and 5.26.2.

Installation

You can install BERTAC by following the procedure described below.

  • Create a new conda environment bertac using the following command. Set a CUDA version available in your environment.
conda create -n bertac python=3.8 tqdm requests scikit-learn cudatoolkit cudnn lz4
  • Install Pytorch into the conda environment
conda activate bertac
conda install -n bertac pytorch=1.8 -c pytorch
  • Git clone the BERTAC code and run pip install -r requirements.txt in the root directory.
# git clone the code
git clone https://github.com/nict-wisdom/bertac
cd bertac

# Install requirements
pip install -r requirements.txt
  • Download the spaCy model en_core_web_md.
# Download the spaCy model 'en_core_web_md' 
python -m spacy download en_core_web_md
  • Install Perl and its JSON module into the conda environment.
# Install Perl and its JSON module
conda install -c anaconda perl -n bertac38
cpan install JSON
# Download pretrained CNN models, the fastText word embedding vectors, and
# the ALBERT xxlarge model (albert-xxlarge-v2) 
sh download_pretrained_model.sh

Note: the BERTAC code was built on the HuggingFace Transformers v2.4.1 and requires the NVIDIA apex as in the HuggingFace Transformers. Please install the NVIDIA apex following the procedure described in the NVIDIA apex page.

You can enter examples/GLUE or examples/QA folders and try the bash commands under these folders to run GLUE or open-domain QA experiments (see examples/GLUE/README.md and examples/QA/README.md for details on the procedures of the experiments).

GLUE experiments

You can run GLUE experiments by following the procedure described in examples/GLUE/README.md.

Results

The performances of BERTAC and other baseline models on the GLUE development set are shown below.

Models MNLI QNLI QQP RTE SST MRPC CoLA STS Avg.
RoBERTa-large 90.2/90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9
ELECTRA-large 90.9/- 95.0 92.4 88.0 96.9 90.8 69.1 92.6 89.5
ALBERT-xxlarge 90.8/- 95.3 92.2 89.2 96.9 90.9 71.4 93.0 90.0
DeBERTa-large 91.1/91.1 95.3 92.3 88.3 96.8 91.9 70.5 92.8 90.0
BERTAC
(ALBERT-xxlarge)
91.3/91.1 95.7 92.3 89.9 97.2 92.4 73.7 93.1 90.7

BERTAC(ALBERT-xxlarge), i.e., BERTAC using ALBERT-xxlarge as its base TLM, showed a higher average score (Avg. of the last column in the table) than (1) ALBERT-xxlarge (the base TLM) and (2) DeBERTa-large (the state-of-the-art method for the GLUE development set).

Open-domain QA experiments

You can run open-domain QA experiments by following the procedure described in examples/QA/README.md.

Results

The performances of BERTAC and other baseline methods on Quasar-T and SearchQA benchmarks are as follows.

Model Quasar-T (EM/F1) SearchQA (EM/F1)
OpenQA 42.2/49.3 58.8/64.5
OpenQA+ARG 43.2/49.7 59.6/65.3
WKLM(BERT-base) 45.8/52.2 61.7/66.7
MBERT(BERT-large) 51.1/59.1 65.1/70.7
CFormer(RoBERTa-large) 54.0/63.9 68.0/75.1
BERTAC(RoBERTa-large) 55.8/63.7 71.9/77.1
BERTAC(ALBERT-xxlarge) 58.0/65.8 74.0/79.2

Here, BERTAC(RoBERTa-large) and BERTAC(ALBERT-xxlarge) represent BERTAC using RoBERTa-large and ALBERT-xxlarge as their base TLM, respectively. BERTAC with any of the base TLMs showed better EM (Exact match with the gold standard answers) than the state-of-the-art method, CFormer(RoBERTa-large), for both benchmarks (Quasar-T and SearchQA).

Citation

If you use this source code, we would appreciate if you cite the following paper:

@inproceedings{ohetal2021bertac,
  title={BERTAC: Enhancing Transformer-based Language Models 
         with Adversarially Pretrained Convolutional Neural Networks},
  author={Jong-Hoon Oh and Ryu Iida and 
          Julien Kloetzer and Kentaro Torisawa},
  booktitle={The Joint Conference of the 59th Annual Meeting  
             of the Association for Computational Linguistics  
             and the 11th International Joint Conference 
             on Natural Language Processing (ACL-IJCNLP 2021)},
  year={2021}
}

Acknowledgements

Part of the source codes is borrowed from HuggingFace Transformers v2.4.1 licensed under Apache 2.0, DrQA licensed under BSD, and Open-QA licensed under MIT.

You might also like...
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation, and natural language understanding (NLU).

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

A library for finding knowledge neurons in pretrained transformer models.
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Releases(cnn_2.3.4.300)
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 342 Jan 05, 2023
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022