Meta graph convolutional neural network-assisted resilient swarm communications

Overview

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

This repository contains the source codes of

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

Zhiyu Mou, Feifei Gao, Jun Liu, and Qihui Wu

Fei-Lab

Problem Descriptions

In this paper, we study the self-healing of communication connectivity (SCC) problem of unmanned aerial vehicle (UAV) swarm network (USNET) that is required to quickly rebuild the communication connectivity under unpredictable external destructions (UEDs). Firstly, to cope with the one-off UEDs, we propose a graph convolutional neural network (GCN) and find the recovery topology of the USNET in an on-line manner. Secondly, to cope with general UEDs, we develop a GCN based trajectory planning algorithm that can make UAVs rebuild the communication connectivity during the self-healing process. We also design a meta learning scheme to facilitate the on-line executions of the GCN. Numerical results show that the proposed algorithms can rebuild the communication connectivity of the USNET more quickly than the existing algorithms under both one-off UEDs and general UEDs. The simulation results also show that the meta learning scheme can not only enhance the performance of the GCN but also reduce the time complexity of the on-line executions.

Display of Main Results Demo

One-off UEDs

randomly destruct 150 UAVs                             randomly destruct 100 UAVs

150 100

General UEDs

general UEDs with global information           general UEDs with monitoring mechanism

general_global_info general

Note: these are gifs. It may take a few seconds to display. You can refresh the page if they cannot display normally. Or you can view them in ./video.

Environment Requirements

pytorch==1.6.0
torchvision==0.7.0
numpy==1.18.5
matplotlib==3.2.2
pandas==1.0.5
seaborn==0.10.1
cuda supports and GPU acceleration

Note: other versions of the required packages may also work.

The machine we use

CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
GPU: NVIDIA GeForce RTX 3090

Necessary Supplementary Downloads

As some of the necessary configuration files, including .xlsx and .npy files can not be uploaded to the github, we upload these files to the clouds. Anyone trying to run these codes need to download the necessary files.

Download initial UAV positions (necessary)

To make the codes reproducible, you need to download the initial positions of UAVs we used in the experiment from https://cloud.tsinghua.edu.cn/f/c18807be55634378b30f/ or https://drive.google.com/file/d/1q1J-F2OAY_VDaNd1DWCfy_N2loN7o1XV/view?usp=sharing. Upzip the download files to ./Configurations/.

Download Trained Meta Parameters (alternative, but if using meta learning without training again, then necessary)

Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ and https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing. You need to download the file from either two links and unzip them to ./Meta_Learning_Results/meta_parameters/if you want to use the trained meta parameters. Otherwise, you need to train the meta parameters again (directly run Meta-learning_all.py)

Download Meta Learning Loss Functions Pictures (alternative)

The loss function pictures of meta learning are available on https://cloud.tsinghua.edu.cn/f/fc0d84f2c6374e29bcbe/ and https://drive.google.com/file/d/1cdceleZWyXcD1GxOPCYlLsRVTwNRWPBy/view?usp=sharing. You can store them in ./Meta_Learning_Results/meta_loss_pic/

Quick Start

Simulate SCC under one-off UEDs

directly run ./Experiment_One_off_UED.py

python Experiment_One_off_UED.py

Simulate meta learning process

directly run ./Meta-learning_all.py

python Meta-learning_all.py

Simulate SCC under general UEDs

directly run ./Experiment_General_UED.py

python Experiment_General_UED.py

File and Directory Explanations

  • ./Configurations/

the initial positions of 200 UAVs

  • ./Drawing/

the drawing functions

  • ./Experiment_Fig/

the experiment figures and the drawing source codes

  • ./Main_algorithm_GCN/

the proposed algorithms in the paper

  • ./Main_algorithm_GCN/CR_MGC.py

the CR-MGC algorithm (Algorithm 2 in the paper)

  • ./Main_algorithm_GCN/GCO.py

the GCO algorithm

  • ./Main_algorithm_GCN/Smallest_d_algorithm.py

algorithm of finding the smallest distance to make the RUAV graph a CCN (Algorithm 1 in the paper)

  • ./Meta_Learning_Results/

the results of meta learning

  • ./Meta_Learning_Results/meta_loss_pic

the loss function pictures of 199 mGCNs

  • ./Meta_Learning_Results/meta_parameters

the meta parameters (Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ or https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing)

  • ./Traditional_Algorithm/

the implementations of traditional algorithms

  • ./video/

the gif files of one-off UEDs

  • ./Configurations.py

the simulation parameters

  • ./Environment.py

the Environment generating UEDs

  • ./Experiment_General_UED.py/

the simulation under general UEDs

  • ./Experiment_One_off_UED.py/

the simulation under one-off UEDs

  • ./Experiment_One_off_UED_draw_Fig_12_d.py/

draw the Fig. 12(d) in the simulation under one-off UEDs

  • ./Meta-learning_all.py/

the meta learning

  • ./Swarm.py/

the integration of algorithms under one-off UEDs

  • ./Swarm_general.py/

the integration of algorithms under general UEDs

  • ./Utils.py/

the utility functions

Note that some unnecessary drawing codes used in the paper are not uploaded to this responsitory.

High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022