Official implementation for "Image Quality Assessment using Contrastive Learning"

Overview

Image Quality Assessment using Contrastive Learning

Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik

This is the official repository of the paper Image Quality Assessment using Contrastive Learning

Usage

The code has been tested on Linux systems with python 3.6. Please refer to requirements.txt for installing dependent packages.

Running CONTRIQUE

In order to obtain quality score using CONTRIQUE model, checkpoint needs to be downloaded. The following command can be used to download the checkpoint.

wget -L https://utexas.box.com/shared/static/rhpa8nkcfzpvdguo97n2d5dbn4qb03z8.tar -O models/CONTRIQUE_checkpoint25.tar -q --show-progress

Alternatively, the checkpoint can also be downloaded using this link.

Obtaining Quality Scores

We provide trained regressor models in models directory which can be used for predicting image quality using features obtained from CONTRIQUE model. For demonstration purposes, some sample images provided in the sample_images folder.

For blind quality prediction, the following commands can be used.

python3 demo_score.py --im_path sample_images/60.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/CLIVE.save
python3 demo_score.py --im_path sample_images/img66.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/LIVE.save

For Full-reference quality assessment, the folllowing command can be employed.

python3 demos_score_FR.py --ref_path sample_images/churchandcapitol.bmp --dist_path sample_images/img66.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/CSIQ_FR.save

Training CONTRIQUE

Download Training Data

Create a directory mkdir training_data to store images used for training CONTRIQUE.

  1. KADIS-700k : Download KADIS-700k dataset and execute the supllied codes to generate synthetically distorted images. Store this data in the training_data/kadis700k directory.
  2. AVA : Download AVA dataset and store in the training_data/UGC_images/AVA_Dataset directory.
  3. COCO : COCO dataset contains 330k images spread across multiple competitions. We used 4 folders training_data/UGC_images/test2015, training_data/UGC_images/train2017, training_data/UGC_images/val2017, training_data/UGC_images/unlabeled2017 for training.
  4. CERTH-Blur : Blur dataset images are stored in the training_data/UGC_images/blur_image directory.
  5. VOC : VOC images are stored in the training_data/UGC_images/VOC2012 directory.

Training Model

Download csv files containing path to images and corresponding distortion classes.

wget -L https://utexas.box.com/shared/static/124n9sfb27chgt59o8mpxl7tomgvn2lo.csv -O csv_files/file_names_ugc.csv -q --show-progress
wget -L https://utexas.box.com/shared/static/jh5cmu63347auyza37773as5o9zxctby.csv -O csv_files/file_names_syn.csv -q --show-progress

The above files can also be downloaded manually using these links link1, link2

For training with a single GPU the following command can be used

python3 train.py --batch_size 256 --lr 0.6 --epochs 25

Training with multiple GPUs using Distributed training (Recommended)

Run the following commands on different terminals concurrently

CUDA_VISIBLE_DEVICES=0 python3 train.py --nodes 4 --nr 0 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=1 python3 train.py --nodes 4 --nr 1 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=2 python3 train.py --nodes 4 --nr 2 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=3 python3 train.py --nodes 4 --nr 3 --batch_size 64 --lr 0.6 --epochs 25

Note that in distributed training, batch_size value will be the number of images to be loaded on each GPU. During CONTRIQUE training equal number of images will be loaded from both synthetic and authentic distortions. Thus in the above example code, 128 images will be loaded on each GPU.

Training Linear Regressor

After CONTRIQUE model training is complete, a linear regressor is trained using CONTRIQUE features and corresponding ground truth quality scores using the following command.

python3 train_regressor.py --feat_path feat.npy --ground_truth_path scores.npy --alpha 0.1

Contact

Please contact Pavan ([email protected]) if you have any questions, suggestions or corrections to the above implementation.

Citation

@article{madhusudana2021st,
  title={Image Quality Assessment using Contrastive Learning},
  author={Madhusudana, Pavan C and Birkbeck, Neil and Wang, Yilin and Adsumilli, Balu and Bovik, Alan C},
  journal={arXiv:2110.13266},
  year={2021}
}
Owner
Pavan Chennagiri
PhD Student
Pavan Chennagiri
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022