计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

Overview

Awesome-Attention-Mechanism-in-cv

Table of Contents

Introduction

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

Attention Mechanism

Paper Publish Link Main Idea Blog
Global Second-order Pooling Convolutional Networks CVPR19 GSoPNet 将高阶和注意力机制在网络中部地方结合起来
Neural Architecture Search for Lightweight Non-Local Networks CVPR20 AutoNL NAS+LightNL
Squeeze and Excitation Network CVPR18 SENet 最经典的通道注意力 zhihu
Selective Kernel Network CVPR19 SKNet SE+动态选择 zhihu
Convolutional Block Attention Module ECCV18 CBAM 串联空间+通道注意力 zhihu
BottleNeck Attention Module BMVC18 BAM 并联空间+通道注意力 zhihu
Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks MICCAI18 scSE 并联空间+通道注意力 zhihu
Non-local Neural Networks CVPR19 Non-Local(NL) self-attention zhihu
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond ICCVW19 GCNet 对NL进行改进 zhihu
CCNet: Criss-Cross Attention for Semantic Segmentation ICCV19 CCNet 对NL改进
SA-Net:shuffle attention for deep convolutional neural networks ICASSP 21 SANet SGE+channel shuffle zhihu
ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks CVPR20 ECANet SE的改进
Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks CoRR19 SGENet Group+spatial+channel
FcaNet: Frequency Channel Attention Networks CoRR20 FcaNet 频域上的SE操作
$A^2\text{-}Nets$: Double Attention Networks NeurIPS18 DANet NL的思想应用到空间和通道
Asymmetric Non-local Neural Networks for Semantic Segmentation ICCV19 APNB spp+NL
Efficient Attention: Attention with Linear Complexities CoRR18 EfficientAttention NL降低计算量
Image Restoration via Residual Non-local Attention Networks ICLR19 RNAN
Exploring Self-attention for Image Recognition CVPR20 SAN 理论性很强,实现起来很简单
An Empirical Study of Spatial Attention Mechanisms in Deep Networks ICCV19 None MSRA综述self-attention
Object-Contextual Representations for Semantic Segmentation ECCV20 OCRNet 复杂的交互机制,效果确实好
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification TTNNLS20 IAUNet 引入时序信息
ResNeSt: Split-Attention Networks CoRR20 ResNeSt SK+ResNeXt
Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks NeurIPS18 GENet SE续作
Improving Convolutional Networks with Self-calibrated Convolutions CVPR20 SCNet 自校正卷积
Rotate to Attend: Convolutional Triplet Attention Module WACV21 TripletAttention CHW两两互相融合
Dual Attention Network for Scene Segmentation CVPR19 DANet self-attention
Relation-Aware Global Attention for Person Re-identification CVPR20 RGA 用于reid
Attentional Feature Fusion WACV21 AFF 特征融合的attention方法
An Attentive Survey of Attention Models CoRR19 None 包括NLP/CV/推荐系统等方面的注意力机制
Stand-Alone Self-Attention in Vision Models NeurIPS19 FullAttention 全部的卷积都替换为self-attention
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation ECCV18 BiSeNet 类似FPN的特征融合方法 zhihu
DCANet: Learning Connected Attentions for Convolutional Neural Networks CoRR20 DCANet 增强attention之间信息流动
An Empirical Study of Spatial Attention Mechanisms in Deep Networks ICCV19 None 对空间注意力进行针对性分析
Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition CVPR17 Oral RA-CNN 细粒度识别
Guided Attention Network for Object Detection and Counting on Drones ACM MM20 GANet 处理目标检测问题
Attention Augmented Convolutional Networks ICCV19 AANet 多头+引入额外特征映射
GLOBAL SELF-ATTENTION NETWORKS FOR IMAGE RECOGNITION ICLR21 GSA 新的全局注意力模块
Attention-Guided Hierarchical Structure Aggregation for Image Matting CVPR20 HAttMatting 抠图方面的应用,高层使用通道注意力机制,然后再使用空间注意力机制指导低层。
Weight Excitation: Built-in Attention Mechanisms in Convolutional Neural Networks ECCV20 None 与SE互补的权值激活机制
Expectation-Maximization Attention Networks for Semantic Segmentation ICCV19 Oral EMANet EM+Attention

Plug and Play Module

  • ACBlock
  • Swish、wish Activation
  • ASPP Block
  • DepthWise Convolution
  • Fused Conv & BN
  • MixedDepthwise Convolution
  • PSP Module
  • RFBModule
  • SematicEmbbedBlock
  • SSH Context Module
  • Some other usefull tools such as concate feature map、flatten feature map
  • WeightedFeatureFusion:EfficientDet中的FPN用到的fuse方式
  • StripPooling:CVPR2020中核心代码StripPooling
  • GhostModule: CVPR2020GhostNet的核心模块
  • SlimConv: SlimConv3x3
  • Context Gating: video classification
  • EffNetBlock: EffNet
  • ECCV2020 BorderDet: Border aligment module
  • CVPR2019 DANet: Dual Attention
  • Object Contextual Representation for sematic segmentation: OCRModule
  • FPT: 包含Self Transform、Grounding Transform、Rendering Transform
  • DOConv: 阿里提出的Depthwise Over-parameterized Convolution
  • PyConv: 起源人工智能研究院提出的金字塔卷积
  • ULSAM:用于紧凑型CNN的超轻量级子空间注意力模块
  • DGC: ECCV 2020用于加速卷积神经网络的动态分组卷积
  • DCANet: ECCV 2020 学习卷积神经网络的连接注意力
  • PSConv: ECCV 2020 将特征金字塔压缩到紧凑的多尺度卷积层中
  • Dynamic Convolution: CVPR2020 动态滤波器卷积(非官方)
  • CondConv: Conditionally Parameterized Convolutions for Efficient Inference

Evaluation

基于CIFAR10+ResNet+待测评模块,对模块进行初步测评。测评代码来自于另外一个库:https://github.com/kuangliu/pytorch-cifar/ 实验过程中,不使用预训练权重,进行随机初始化。

模型 top1 acc time params(MB)
SENet18 95.28% 1:27:50 11,260,354
ResNet18 95.16% 1:13:03 11,173,962
ResNet50 95.50% 4:24:38 23,520,842
ShuffleNetV2 91.90% 1:02:50 1,263,854
GoogLeNet 91.90% 1:02:50 6,166,250
MobileNetV2 92.66% 2:04:57 2,296,922
SA-ResNet50 89.83% 2:10:07 23,528,758
SA-ResNet18 95.07% 1:39:38 11,171,394

Paper List

SENet 论文: https://arxiv.org/abs/1709.01507 解读:https://zhuanlan.zhihu.com/p/102035721

Contribute

欢迎在issue中提出补充的文章paper和对应code链接。

Owner
PJDong
Computer vision learner, deep learner
PJDong
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023