Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Overview

Pre-trained image classification models for Jax/Haiku

Jax/Haiku Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

Available Models

  • MobileNetV1
  • ResNet, ResNetV2
  • VGG16, VGG19
  • Xception

Planned Releases

  • MobileNetV2, MobileNetV3
  • InceptionResNetV2, InceptionV3
  • EfficientNetV1, EfficientNetV2

Installation

Haikumodels require Python 3.7 or later.

  1. Needed libraries can be installed using "installation.txt".
  2. If Jax GPU support desired, must be installed seperately according to system needs.

Usage examples for image classification models

Classify ImageNet classes with ResNet50

import haiku as hk
import jax
import jax.numpy as jnp
from PIL import Image

import haikumodels as hm

rng = jax.random.PRNGKey(42)


def _model(images, is_training):
  net = hm.ResNet50()
  return net(images, is_training)


model = hk.transform_with_state(_model)

img_path = "elephant.jpg"
img = Image.open(img_path).resize((224, 224))

x = jnp.asarray(img, dtype=jnp.float32)
x = jnp.expand_dims(x, axis=0)
x = hm.resnet.preprocess_input(x)

params, state = model.init(rng, x, is_training=True)

preds, _ = model.apply(params, state, None, x, is_training=False)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print("Predicted:", hm.decode_predictions(preds, top=3)[0])
# Predicted:
# [('n02504013', 'Indian_elephant', 0.8784022),
# ('n01871265', 'tusker', 0.09620289),
# ('n02504458', 'African_elephant', 0.025362419)]

Extract features with VGG16

import haiku as hk
import jax
import jax.numpy as jnp
from PIL import Image

import haikumodels as hm

rng = jax.random.PRNGKey(42)

model = hk.without_apply_rng(hk.transform(hm.VGG16(include_top=False)))

img_path = "elephant.jpg"
img = Image.open(img_path).resize((224, 224))

x = jnp.asarray(img, dtype=jnp.float32)
x = jnp.expand_dims(x, axis=0)
x = hm.vgg.preprocess_input(x)

params = model.init(rng, x)

features = model.apply(params, x)

Fine-tune Xception on a new set of classes

from typing import Callable, Any, Sequence, Optional

import optax
import haiku as hk
import jax
import jax.numpy as jnp

import haikumodels as hm

rng = jax.random.PRNGKey(42)


class Freezable_TrainState(NamedTuple):
  trainable_params: hk.Params
  non_trainable_params: hk.Params
  state: hk.State
  opt_state: optax.OptState


# create your custom top layers and include the desired pretrained model
class ft_xception(hk.Module):

  def __init__(
      self,
      classes: int,
      classifier_activation: Callable[[jnp.ndarray],
                                      jnp.ndarray] = jax.nn.softmax,
      with_bias: bool = True,
      w_init: Callable[[Sequence[int], Any], jnp.ndarray] = None,
      b_init: Callable[[Sequence[int], Any], jnp.ndarray] = None,
      name: Optional[str] = None,
  ):
    super().__init__(name=name)
    self.classifier_activation = classifier_activation

    self.xception_no_top = hm.Xception(include_top=False)
    self.dense_layer = hk.Linear(
        output_size=1024,
        with_bias=with_bias,
        w_init=w_init,
        b_init=b_init,
        name="trainable_dense_layer",
    )
    self.top_layer = hk.Linear(
        output_size=classes,
        with_bias=with_bias,
        w_init=w_init,
        b_init=b_init,
        name="trainable_top_layer",
    )

  def __call__(self, inputs: jnp.ndarray, is_training: bool):
    out = self.xception_no_top(inputs, is_training)
    out = jnp.mean(out, axis=(1, 2))
    out = self.dense_layer(out)
    out = jax.nn.relu(out)
    out = self.top_layer(out)
    out = self.classifier_activation(out)


# use `transform_with_state` if models has batchnorm in it
# else use `transform` and then `without_apply_rng`
def _model(images, is_training):
  net = ft_xception(classes=200)
  return net(images, is_training)


model = hk.transform_with_state(_model)

# create your desired optimizer using Optax or alternatives
opt = optax.rmsprop(learning_rate=1e-4, momentum=0.90)


# this function will initialize params and state
# use the desired keyword to divide params to trainable and non_trainable
def initial_state(x_y, nonfreeze_key="trainable"):
  x, _ = x_y
  params, state = model.init(rng, x, is_training=True)

  trainable_params, non_trainable_params = hk.data_structures.partition(
      lambda m, n, p: nonfreeze_key in m, params)

  opt_state = opt.init(params)

  return Freezable_TrainState(trainable_params, non_trainable_params, state,
                              opt_state)


train_state = initial_state(next(gen_x_y))


# create your own custom loss function as desired
def loss_function(trainable_params, non_trainable_params, state, x_y):
  x, y = x_y
  params = hk.data_structures.merge(trainable_params, non_trainable_params)
  y_, state = model.apply(params, state, None, x, is_training=True)

  cce = categorical_crossentropy(y, y_)

  return cce, state


# to update params and optimizer, a train_step function must be created
@jax.jit
def train_step(train_state: Freezable_TrainState, x_y):
  trainable_params, non_trainable_params, state, opt_state = train_state
  trainable_params_grads, _ = jax.grad(loss_function,
                                       has_aux=True)(trainable_params,
                                                     non_trainable_params,
                                                     state, x_y)

  updates, new_opt_state = opt.update(trainable_params_grads, opt_state)
  new_trainable_params = optax.apply_updates(trainable_params, updates)

  train_state = Freezable_TrainState(new_trainable_params, non_trainable_params,
                                     state, new_opt_state)
  return train_state


# train the model on the new data for few epochs
train_state = train_step(train_state, next(gen_x_y))

# after training is complete it possible to merge
# trainable and non_trainable params to use for prediction
trainable_params, non_trainable_params, state, _ = train_state
params = hk.data_structures.merge(trainable_params, non_trainable_params)
preds, _ = model.apply(params, state, None, x, is_training=False)
You might also like...
3D ResNet Video Classification accelerated by TensorRT
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Reproduces ResNet-V3 with pytorch
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

Comments
  • Expected top-1 test accuracy

    Expected top-1 test accuracy

    Hi

    This is a fantastic project! The released checkpoints are super helpful!

    I am wondering what's the top-1 test accuracy that one should get using the released ResNet-50 checkpoints. I am able to reach 0.749 using the my own ImageNet dataloader implemented via Tensorflow Datasets. Is the number close to your results?

    BTW, it would also be very helpful if you could release your training and dataloading code for these models!

    Thanks,

    opened by xidulu 2
  • Fitting issue

    Fitting issue

    I was trying to use a few of your pre-trained models, in particular the ResNet50 and VGG16 for features extraction, but unfortunately I didn't manage to fit on the Nvidia Titan X with 12GB of VRAM my question is which GPU did you use for training, how much VRAM I need for use them?

    For the VGG16 the system was asking me for 4 more GB and for the ResNet50 about 20 more

    Thanks.

    opened by mattiadutto 1
Owner
Alper Baris CELIK
Alper Baris CELIK
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022