GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Overview

Geometric Transformer for Fast and Robust Point Cloud Registration

PyTorch implementation of the paper:

Geometric Transformer for Fast and Robust Point Cloud Registration.

Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, and Kai Xu

Introduction

We study the problem of extracting accurate correspondences for point cloud registration. Recent keypoint-free methods bypass the detection of repeatable keypoints which is difficult in low-overlap scenarios, showing great potential in registration. They seek correspondences over downsampled superpoints, which are then propagated to dense points. Superpoints are matched based on whether their neighboring patches overlap. Such sparse and loose matching requires contextual features capturing the geometric structure of the point clouds. We propose Geometric Transformer to learn geometric feature for robust superpoint matching. It encodes pair-wise distances and triplet-wise angles, making it robust in low-overlap cases and invariant to rigid transformation. The simplistic design attains surprisingly high matching accuracy such that no RANSAC is required in the estimation of alignment transformation, leading to $100$ times acceleration. Our method improves the inlier ratio by $17% \sim 30%$ and the registration recall by over $7%$ on the challenging 3DLoMatch benchmark. Code will be released for paper reproduction.

News

Installation

Please use the following command for installation.

# It is recommended to create a new environment
conda create -n geotransformer python==3.8
conda activate geotransformer

# [Optional] If you are using CUDA 11.0 or newer, please install `torch==1.7.1+cu110`
pip install torch==1.7.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html

# Install packages and other dependencies
python setup.py build develop

# Compile c++ wrappers
cd geotransformer/cpp_wrappers
sh ./compile_wrappers.sh

Code has been tested with Ubuntu 20.04, GCC 9.3.0, Python 3.8, PyTorch 1.7.1, CUDA 11.1 and cuDNN 8.1.0.

Data preparation

We provide code for training and testing on 3DMatch.

The dataset can be download from PREDATOR. The data should be organized as follows:

--data--3DMatch--metadata
              |--data--train--7-scenes-chess--cloud_bin_0.pth
                    |      |               |--...
                    |      |--...
                    |--test--7-scenes-redkitchen--cloud_bin_0.pth
                          |                    |--...
                          |--...

Training

The code for GeoTransformer is in experiments/geotransformer.3dmatch. Use the following command for training.

CUDA_VISIBLE_DEVICES=0 python trainval.py
# use "--snapshot=path/to/snapshot" to resume training.

Testing

Use the following command for testing.

# 3DMatch
CUDA_VISIBLE_DEVICES=0 ./eval.sh EPOCH 3DMatch
# 3DLoMatch
CUDA_VISIBLE_DEVICES=0 ./eval.sh EPOCH 3DLoMatch

EPOCH is the epoch id.

We also provide pretrained weights in weights, use the following command to test the pretrained weights.

CUDA_VISIBLE_DEVICES=0 python test.py --snapshot=../../weights/geotransformer-3dmatch.pth.tar --benchmark=3DMatch
CUDA_VISIBLE_DEVICES=0 python eval.py --run_matching --run_registration --benchmark=3DMatch

Replace 3DMatch with 3DLoMatch to evaluate on 3DLoMatch.

Results

Benchmark FMR IR RR
3DMatch 97.7 70.3 91.5
3DLoMatch 88.1 43.3 74.0
Comments
  • Test and visualize on two given point clouds

    Test and visualize on two given point clouds

    Hi, thanks for sharing your work. Is it easy to give some guidance or do you have any tutorial to test/evaluate the pre-trained models on two individual given point clouds?

    opened by ttsesm 10
  • Question about kitti result reproduce.

    Question about kitti result reproduce.

    Hi ,thanks for your amazing work.

    However , I have met a problem of kitti dataset result reproduce. I followed your code to train and test on kitti dataset , but my result seems always lower than the result in your paper. I can achieve Registration recall of 99.8 and RTE 6.8 same as yours ,but my result of RRE is about 0.33 which is much higher than 0.24 in your paper.

    Can you give me some idea of how to reproduce the same result ?

    opened by vision507 9
  • How to draw the point cloud like this ?

    How to draw the point cloud like this ?

    Hi , thanks for your great work. And I would like to know how can I get this kind of visualization result in your paper. 屏幕截图 2022-08-04 081115 When I use open3d to draw the point clouds , it seems very ugly, so I'm wondering how can I get your visualization result. It would be very grateful.

    opened by vision507 9
  • How to group data sets after downloading

    How to group data sets after downloading

    Hello, author: I ran the python files in the Kitti dataset and ModelNet dataset folders according to your requirements, but they did not work and were not classified into the ones you described. Is there a specific method? thank you!

    opened by yangsihai97 9
  • Some questions about downsampling of point clouds

    Some questions about downsampling of point clouds

    Hi there,

    Really appreciate releasing your amazing work! I'm quite new to point clouds and I have some questions regarding downsampling of the point clouds.

    Take 3DMatch as an example. The original raw dataset downloaded from PREDATOR is quite dense, and is preprocessed so that each grid size is 2.5cm. In your work, you further subsample the point clouds using KPConv (the first level downsampled points). My first question is what's the purpose of subsampling? Would a denser point cloud be more informative for registration?

    Also, is there a specific reason you downsample the points further for dense point correspondences as I believe the preprocessed input data is already of density 2.5cm?

    Last, is there a quick way to visualize the registration result for the 3DMatch benchmark? By running eval.py and test.py it seems to only produce the quantitative metrics.

    Thanks for your patience and reply in advance!

    opened by jinhong-ni 5
  • 3DMatch dataset

    3DMatch dataset

    Hi,

    I have a question regarding the D.2. section from the Supplementary material.

    Could you please share which 3DMatch files you use for the evaluation?

    • Do you use those with overlap > 30%?
    • Do you use consecutive pairs of point cloud indices (the original 3DMatch filters the pairs (i,j) with i+1 < j)?

    You mention that you use the files from PREDATOR, but PREDATOR has more pairs than the original 3DMatch dataset. Can you please elaborate?

    Thank you in advance for you response. Hopefully we can clear all this confusion of the registration pairs used in the datasets. Every paper seems to do it a bit differently.

    opened by DavidBoja 4
  • why need gt transoform in demo.py

    why need gt transoform in demo.py

    in line 74 in experiments/geotransformer.3dmatch.stage4.gse.k3.max.oacl.stage2.sinkhorn/model.py , transform = data_dict['transform'].detach(), and in line 110 you use gt transform in get_node_correspondences. however If i don't know how the transform matrix of src to ref, how can I use demo.py

    opened by MaybeOjbk 4
  • The different RR in test.py and eval.py

    The different RR in test.py and eval.py

    Hello, thank you for you amazing work again. When I evaluated on 3DMatch, I found the RR reported by test.py and eval.py are very different, what makes this difference?

    opened by Hui-design 4
  • Question about radius search

    Question about radius search

    First of all, thanks for your excellent work! Radius search in KPConv is quiet slow for large scale point clouds and it usually takes seconds in my own experiments. Is there a more efficient way for radius search, such as a version that can run on GPU. Hope to get your answer!

    opened by Fleurrr 4
  • Questions about RANSAC

    Questions about RANSAC

    Dear authors,

    Thanks for open-sourcing your amazing work. I'm experimenting with RANSAC and I noticed some unexpected results compared to the paper.

    What I've done is first change the number of iterations in RANSAC to 50k. The evaluation runs extremely slowly (approx. 16 hrs in contrast to about 1 hr for local to global), and I only got performance similar to local to global. I also tried to change the number of points in RANSAC to a larger number (by default it is set to 3), such as 250, 500, 1000, etc. I did not achieve a significant gain in performance, even the recall collapses to zero if the number of points is set too big (like 5k). This is contradicting to what's reported in the paper, as the performance is reported to keep improving as the number of samples increases.

    I would be super grateful if you could guide me through what I've done wrong here. Thanks in advance for your patience and help!

    opened by jinhong-ni 4
  • RuntimeError: Error compiling objects for extension

    RuntimeError: Error compiling objects for extension

    Hello, sir. The question is about creating the code runtime environment. After reinstalling CUDA and downloading torch, I executed 'python setup.py build develop' and it still report the error, 'RuntimeError: Error compiling objects for extension'.

    Traceback (most recent call last): File "setup.py", line 5, in setup( File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_init_.py", line 87, in setup return distutils.core.setup(**attrs) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\core.py", line 148, in setup return run_commands(dist) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\core.py", line 163, in run_commands dist.run_commands() File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\dist.py", line 967, in run_commands self.run_command(cmd) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools\dist.py", line 1214, in run_command super().run_command(command) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\dist.py", line 986, in run_command cmd_obj.run() File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\command\build.py", line 135, in run self.run_command(cmd_name) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\cmd.py", line 313, in run_command self.distribution.run_command(command) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools\dist.py", line 1214, in run_command super().run_command(command) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\dist.py", line 986, in run_command cmd_obj.run() File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools\command\build_ext.py", line 79, in run _build_ext.run(self) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\command\build_ext.py", line 339, in run self.build_extensions() File "F:\Anaconda3\envs\geotransformer\lib\site-packages\torch\utils\cpp_extension.py", line 670, in build_extensions build_ext.build_extensions(self) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\command\build_ext.py", line 448, in build_extensions self._build_extensions_serial() File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\command\build_ext.py", line 473, in _build_extensions_serial self.build_extension(ext) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools\command\build_ext.py", line 202, in build_extension _build_ext.build_extension(self, ext) File "F:\Anaconda3\envs\geotransformer\lib\site-packages\setuptools_distutils\command\build_ext.py", line 528, in build_extension objects = self.compiler.compile(sources, File "F:\Anaconda3\envs\geotransformer\lib\site-packages\torch\utils\cpp_extension.py", line 643, in win_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "F:\Anaconda3\envs\geotransformer\lib\site-packages\torch\utils\cpp_extension.py", line 1250, in _write_ninja_file_and_compile_objects _run_ninja_build( File "F:\Anaconda3\envs\geotransformer\lib\site-packages\torch\utils\cpp_extension.py", line 1555, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension

    Is this because I use win10? Or other issues caused the error?

    opened by ChaunceyQ 4
  • The training model is not effective

    The training model is not effective

    Thank you for your excellent work. When I use the LGR training model without changing the code, the result on 3DMatch (about 91.0%) was still quite different from the model you provided (92.5%)

    opened by awdx551 3
Owner
Zheng Qin
computer vision, deep learning
Zheng Qin
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023