BBScan py3 - BBScan py3 With Python

Overview

BBScan_py3

This repository is forked from lijiejie/BBScan 1.5. I migrated the former python code to python3. The following description is the origin author's readme.

BBScan 是一个高并发漏洞扫描工具,可用于

  • 高危漏洞爆发后,编写简单插件或规则,进行全网扫描
  • 作为巡检组件,集成到已有漏洞扫描系统中

BBScan能够在1分钟内

  • 对超过2万个IP地址进行指定端口发现,同时,进行漏洞验证。例如,Samba MS17010漏洞
  • 对超过1000个网站进行HTTP服务发现(80/443),同时,请求某个指定URL,完成漏洞检测

BBScan is a super fast vulnerability scanner.

  • A class B network (65534 hosts) could be scanned within 4 minutes (ex. Detect Samba MS17010)
  • Up to find more than 1000 target's web services and meanwhile, detect the vulnerability associated with a specified URL within one minute

Install

pip3 install -r requirements.txt

开始使用

  • 使用1个或多个插件,扫描某个B段
python BBScan.py --scripts-only --script redis_unauthorized_access --host www.site.com --network 16

上述命令将使用 redis_unauthorized_access 插件,扫描 www.site.com/16,扫描过程将持续 2~4 分钟。

  • 使用1个或多个规则,扫描文件中的所有目标
python BBScan.py --no-scripts --rule git_and_svn --no-check404 --no-crawl -f iqiyi.txt

使用 git_and_svn 文件中的规则,扫描 iqiyi.txt 文件中的所有目标,每一行一个目标

--no-check404 指定不检查404状态码

--no-crawl 指定不抓取子目录

通过指定上述两个参数,可显著减少HTTP请求的数量。

参数说明

如何设定扫描目标

  --host [HOST [HOST ...]]
                        该参数可指定1个或多个域名/IP
  -f TargetFile         从文件中导入所有目标,目标以换行符分隔
  -d TargetDirectory    从文件夹导入所有.txt文件,文件中是换行符分隔的目标
  --network MASK        设置一个子网掩码(8 ~ 31),配合上面3个参数中任意一个。将扫描
  						Target/MASK 网络下面的所有IP

HTTP扫描

  --rule [RuleFileName [RuleFileName ...]]
                        扫描指定的1个或多个规则
  -n, --no-crawl        禁用页面抓取,不处理页面中的其他链接
  -nn, --no-check404    禁用404状态码检查
  --full                处理所有子目录。 /x/y/z/这样的链接,/x/ /x/y/也将被扫描

插件扫描

  --scripts-only        只启用插件扫描,禁用HTTP规则扫描
  --script [ScriptName [ScriptName ...]]
                        扫描指定1个或多个插件
  --no-scripts          禁用插件扫描

并发

  -p PROCESS            扫描进程数,默认30。建议设置 10 ~ 50之间
  -t THREADS            单个目标的扫描线程数, 默认3。建议设置 3 ~ 10之间

其他参数

  --timeout TIMEOUT     单个目标最大扫描时间(单位:分钟),默认10分钟
  -md                   输出markdown格式报告
  --save-ports PortsDataFile
                        将端口开放信息保存到文件 PortsDataFile,可以导入再次使用
  --debug               打印调试信息
  -nnn, --no-browser    不使用默认浏览器打开扫描报告
  -v                    show program's version number and exit

使用技巧

  • 如何把BBScan当做一个快速的端口扫描工具使用?

找到scripts/tools/port_scan.py,填入需要扫描的端口号列表。把文件移动到scripts下。执行

python BBScan.py --scripts-only --script port_scan --host www.baidu.com --network 16 --save-ports ports_80.txt

--save-ports 是一个非常有用的参数,可以将每次任务执行过程发现的端口,保存到文件中

  • 如何观察执行过程

请设置 --debug 参数,观察是否按照预期,执行插件,发起HTTP请求

  • 如何编写插件

请参考scripts文件夹下的插件内容。self参数是一个Scanner对象,可使用Scanner对象的任意方法、属性。

self.host self.port 是目标主机和端口

self.ports_open 是开放的端口列表,是所有插件共享的。 一般不在插件执行过程中再单独扫描端口

self.conn_pool 是HTTP连接池

self.http_request 可发起HTTP GET请求

self.index_headers self.index_status self.index_html_doc 是请求首页后返回的,一旦扫描器发现有插件依赖,会预先请求首页,保存下来,被所有插件公用

Owner
baiyunfei
我是一个执着的人,坚持做着自己热爱的事情!
baiyunfei
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022