Convolutional Neural Network for 3D meshes in PyTorch

Overview




MeshCNN in PyTorch

SIGGRAPH 2019 [Paper] [Project Page]

MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used for tasks such as 3D shape classification or segmentation. This framework includes convolution, pooling and unpooling layers which are applied directly on the mesh edges.


The code was written by Rana Hanocka and Amir Hertz with support from Noa Fish.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/ranahanocka/MeshCNN.git
cd MeshCNN
  • Install dependencies: PyTorch version 1.2. Optional : tensorboardX for training plots.
    • Via new conda environment conda env create -f environment.yml (creates an environment called meshcnn)

3D Shape Classification on SHREC

Download the dataset

bash ./scripts/shrec/get_data.sh

Run training (if using conda env first activate env e.g. source activate meshcnn)

bash ./scripts/shrec/train.sh

To view the training loss plots, in another terminal run tensorboard --logdir runs and click http://localhost:6006.

Run test and export the intermediate pooled meshes:

bash ./scripts/shrec/test.sh

Visualize the network-learned edge collapses:

bash ./scripts/shrec/view.sh

An example of collapses for a mesh:

Note, you can also get pre-trained weights using bash ./scripts/shrec/get_pretrained.sh.

In order to use the pre-trained weights, run train.sh which will compute and save the mean / standard deviation of the training data.

3D Shape Segmentation on Humans

The same as above, to download the dataset / run train / get pretrained / run test / view

bash ./scripts/human_seg/get_data.sh
bash ./scripts/human_seg/train.sh
bash ./scripts/human_seg/get_pretrained.sh
bash ./scripts/human_seg/test.sh
bash ./scripts/human_seg/view.sh

Some segmentation result examples:

Additional Datasets

The same scripts also exist for COSEG segmentation in scripts/coseg_seg and cubes classification in scripts/cubes.

More Info

Check out the MeshCNN wiki for more details. Specifically, see info on segmentation and data processing.

Citation

If you find this code useful, please consider citing our paper

@article{hanocka2019meshcnn,
  title={MeshCNN: A Network with an Edge},
  author={Hanocka, Rana and Hertz, Amir and Fish, Noa and Giryes, Raja and Fleishman, Shachar and Cohen-Or, Daniel},
  journal={ACM Transactions on Graphics (TOG)},
  volume={38},
  number={4},
  pages = {90:1--90:12},
  year={2019},
  publisher={ACM}
}

Questions / Issues

If you have questions or issues running this code, please open an issue so we can know to fix it.

Acknowledgments

This code design was adopted from pytorch-CycleGAN-and-pix2pix.

Owner
Rana Hanocka
Research in Deep Learning and Computer Graphics
Rana Hanocka
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
5 Jan 05, 2023
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022