PyTea: PyTorch Tensor shape error analyzer

Overview

PyTea: PyTorch Tensor Shape Error Analyzer

paper project page

Requirements

  • node.js >= 12.x
  • python >= 3.8
    • z3-solver >= 4.8

How to install and use

# install node.js
sudo apt-get install nodejs

# install python z3-solver
pip install z3-solver

# download pytea
wget https://github.com/ropas/pytea/releases/download/v0.1.0/pytea.zip
unzip pytea.zip

# run pytea
python bin/pytea.py path/to/source.py

# run example file
python bin/pytea.py packages/pytea/pytest/basics/scratch.py

How to build

# install dependencies
npm run install:all
pip install z3-solver

# build
npm run build

Documentations

Brief explanation of the analysis result

PyTea is composed of two analyzers.

  • Online analysis: node.js (TypeScript / JavaScript)
    • Find numeric range-based shape mismatch and misuse of API argument. If PyTea has found any error while analyzing the code, it will stop at that position and inform the errors and violated constraints to the user.
  • Offline analysis: Z3 / Python
    • The generated constraints are passed to Z3Py. Z3 will solve the constraint sets of each path and print the first violated constraint (if it exists).

The result of the Online analyzer is divided into three classes:

  • potential success path: the analyzer does not found shape mismatch until now, but the final constraint set can be violated if Z3 analyzes it on closer inspection.
  • potential unreachable path: the analyzer found a shape mismatch or API misuses, but there remain path constraints. In short, path constraint is an unresolved branch condition; that means the stopped path might be unreachable if remaining path constraints have a contradiction. Those cases will be distinguished from Offline analysis.
  • immediate failed path: the analyzer has found an error, stops its analysis immediately.

CAVEAT: If the code contains PyTorch or other third-party APIs that we have not implemented, it will raise false alarms. Nevertheless, we also record each unimplemented API call. See LOGS section from the result and search which unimplemented API call is performed.

The final result of the Offline analysis is divided into several cases.

  • Valid path: SMT solver has not found any error. Every constraint will always be fulfilled.
  • Invalid path: SMT solver found a condition that can violate some constraints. Notice that this does not mean the code will always crash, but it found an extreme case that crashes some executions.
  • Undecidable path: SMT solver has met unsolvable constraints, then timeouts. Some non-linear formulae can be classified into this case.
  • Unreachable path: Hard and Path constraints contain contradicting constraints; this path will not be realized from the beginning.

Result examples

  • Error found by Online analysis

test1

  • Error found by Offline analysis

test2

License

MIT License

This project is based on Pyright, also MIT License

Comments
  • LSTM/GRU input_size tensor shape errors

    LSTM/GRU input_size tensor shape errors

    Hi, I have met a problem while detecting LSTM tensor shape errors. The testing file below is runnable and pytea returns correctly.

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    class Model(nn.Module):
    
        def __init__(self):
            super().__init__()
            self.cnn = nn.Conv2d(3, 1, 3, 1, 1)
            self.rnn = nn.LSTM(32, 64, 1, batch_first=True)
            self.pool = nn.MaxPool2d(2, 2)
            self.fc = nn.Linear(64, 16)
    
        def forward(self, x):
            x = self.pool(F.relu(self.cnn(x)))
            x = x.view(-1, 32, 32)
            x, _ = self.rnn(x)
            x = x[:, -1, :].squeeze(1)
            x = F.relu(self.fc(x))
            x = F.softmax(x, dim=-1)
            return x
    
    
    if __name__ == "__main__":
        net = Model()
        x = torch.randn(2, 3, 64, 64)
        y = net(x)
        target = torch.argmax(torch.randn(2, 16), dim=-1)
        loss = F.cross_entropy(y, target.long())
        loss.backward()
        print(y.size())
    

    However, If I change self.rnn = nn.LSTM(32, 64, 1, batch_first=True) into self.rnn = nn.LSTM(64, 64, 1, batch_first=True), torch will report a RuntimeError: Expected 64, got 32. pytea didn't return any CONSTRAINTS information, as it supposed to.

    Then I tried to more LSTM input_size shape errors, all failed. Same situation with GRU. I think it is a bug, because I can detect Conv2d, Linear error successfully.

    opened by MCplayerFromPRC 4
  • Inconsistent with document description

    Inconsistent with document description

    Hello, I have encountered the following problems:

    First question: The content of my source file is:

       import torch
       import torch.nn as nn
    
      class Net(nn.Module):
          def __init__(self):
              super(Net, self).__init__()
              self.layers = nn.Sequential(
                  nn.Linear(28 * 28, 120),
                  nn.ReLU(),
                  nn.Linear(80, 10))
      
          def a(self):
              pass
    
        if __name__ == "__main__":
            n = Net()
    

    But when I execute the command, I get the following results:

    image

    There should be a problem with defining shape in this model.

    Second question: I used it https://github.com/pytorch/examples/blob/master/mnist/main.py , but the command is stuck and no result is returned. As follows:

    image
    opened by dejavu6 2
  • Ternary expression (A if B else C) bug report

    Ternary expression (A if B else C) bug report

    아래와 같은 코드 실행에서 문제가 발생한다는 것을 깨달았습니다.

    x = 0 if 0 <= 1 else 1
    
    # runtime output
    REDUCED HEAP: (size: 250)
      x => 1
    

    파이썬의 삼항연산자가 x = (((0 <= 1) and 0) or 1)로 파싱됩니다. Logical statement가 True, true-value가 0일 때 발생하는 오류인 것으로 보입니다.

    당장 벤치마크 코드에서 나타나는 문제는 아닙니다. Pylib builtin 구현에서 발생한 문제이므로, 다른 방식으로 구현함으로써 일단은 피해갈 수 있을 것 같습니다.

    감사합니다.

    opened by lego0901 1
  • Develop sehoon

    Develop sehoon

    UT-1~6 코드 분석에 필요한 torch API 구현 완료.

    UT-2: epoch을 1로 수정하지 않으면 timeout이됨. UT-3: Python 빌트인 함수 iter, next의 구현은 우선 넘어갔음. UT-6: buggy 코드에서 target이 free variable인데, 이를 처리해 주지 않고 분석을 실행하면 아무것도 출력하지 않는 버그가 있음.

    위 특이사항을 적절히 처리해주고 분석을 실행하면 1~6 모두 buggy 코드는 invalid, fix 코드는 valid 결과를 냄.

    opened by Sehun0819 0
  • path constraint check

    path constraint check

    분석중 한 패스에서 (텐서 모양 오류 등의) 에러를 만나면 해당 패스는 처리됨. 문제는 분기 조건문에 의해 실제로는 진행되지 않는 패스여도 로 처리가 되는 것.

    따라서 분석중 에러를 만났을 때 그 패스가 path constraint를 갖고 있으면 로 처리하여 z3단에 넘기게 수정하였음.

    TODO: z3단에 넘기기 전에 path constraint를 계산하여 Valid면 , Unsat이면 로 처리하기(else )

    opened by Sehun0819 0
  • Bump node-notifier from 8.0.0 to 8.0.1 in /packages/pyright-internal

    Bump node-notifier from 8.0.0 to 8.0.1 in /packages/pyright-internal

    Bumps node-notifier from 8.0.0 to 8.0.1.

    Changelog

    Sourced from node-notifier's changelog.

    v8.0.1

    • fixes possible injection issue for notify-send
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v0.1.0)
Owner
ROPAS Lab.
ROPAS Lab. @ Seoul National University
ROPAS Lab.
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022