Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Related tags

Text Data & NLPDPL
Overview

Dual Path Learning for Domain Adaptation of Semantic Segmentation

Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Accepted by ICCV 2021. Paper

Requirements

  • Pytorch 3.6
  • torch==1.5
  • torchvision==0.6
  • Pillow==7.1.2

Dataset Preparations

For GTA5->Cityscapes scenario, download:

For further evaluation on SYNTHIA->Cityscapes scenario, download:

The folder should be structured as:

|DPL
|—— DPL_master/
|—— CycleGAN_DPL/
|—— data/
│   ├—— Cityscapes/  
|   |   ├—— data/
|   |       ├—— gtFine/
|   |       ├—— leftImg8bit/
│   ├—— GTA5/
|   |   ├—— images/
|   |   ├—— labels/
|   |   ├—— ...
│   ├—— synthia/ 
|   |   ├—— RGB/
|   |   ├—— GT/
|   |   ├—— Depth/
|   |   ├—— ...

Evaluation

Download pre-trained models from Pretrained_Resnet_GTA5 [Google_Drive, BaiduYun(Code:t7t8)] and save the unzipped models in ./DPL_master/DPL_pretrained, download translated target images from DPI2I_City2GTA_Resnet [Google_Drive, BaiduYun(Code:cf5a)] and save the unzipped images in ./DPL_master/DPI2I_images/DPI2I_City2GTA_Resnet/val. Then you can evaluate DPL and DPL-Dual as following:

  • Evaluation of DPL
    cd DPL_master
    python evaluation.py --init-weights ./DPL_pretrained/Resnet_GTA5_DPLst4_T.pth --save path_to_DPL_results/results --log-dir path_to_DPL_results
    
  • Evaluation of DPL-Dual
    python evaluation_DPL.py --data-dir-targetB ./DPI2I_images/DPI2I_City2GTA_Resnet --init-weights_S ./DPL_pretrained/Resnet_GTA5_DPLst4_S.pth --init-weights_T ./DPL_pretrained/Resnet_GTA5_DPLst4_T.pth --save path_to_DPL_dual_results/results --log-dir path_to_DPL_dual_results
    

More pretrained models and translated target images on other settings can be downloaded from:

Training

The training process of DPL consists of two phases: single-path warm-up and DPL training. The training example is given on default setting: GTA5->Cityscapes, DeepLab-V2 with ResNet-101.

Quick start for DPL training

Downlad pretrained 1 and 1 [Google_Drive, BaiduYun(Code: 3ndm)], save 1 to path_to_model_S, save 1 to path_to_model_T, then you can train DPL as following:

  1. Train dual path image generation module.

    cd ../CycleGAN_DPL
    python train.py --dataroot ../data --name dual_path_I2I --A_setroot GTA5/images --B_setroot Cityscapes/leftImg8bit/train --model cycle_diff --lambda_semantic 1 --init_weights_S path_to_model_S --init_weights_T path_to_model_T
    
  2. Generate transferred images with dual path image generation module.

    • Generate transferred GTA5->Cityscapes images.
    python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/GTA5/images --model_suffix A  --results_dir DPI2I_path_to_GTA52cityscapes
    
    • Generate transferred Cityscapes->GTA5 images.
     python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/Cityscapes/leftImg8bit/train --model_suffix B  --results_dir DPI2I_path_to_cityscapes2GTA5/train
     
     python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/Cityscapes/leftImg8bit/val --model_suffix B  --results_dir DPI2I_path_to_cityscapes2GTA5/val
    
  3. Train dual path adaptive segmentation module

    3.1. Generate dual path pseudo label.

    cd ../DPL_master
    python DP_SSL.py --save path_to_dual_pseudo_label_stepi --init-weights_S path_to_model_S --init-weights_T path_to_model_T --thresh 0.9 --threshlen 0.3 --data-list-target ./dataset/cityscapes_list/train.txt --set train --data-dir-targetB DPI2I_path_to_cityscapes2GTA5 --alpha 0.5
    

    3.2. Train 1 and 1 with dual path pseudo label respectively.

    python DPL.py --snapshot-dir snapshots/DPL_modelS_step_i --data-dir-target DPI2I_path_to_cityscapes2GTA5 --data-label-folder-target path_to_dual_pseudo_label_stepi --init-weights path_to_model_S --domain S
    
    python DPL.py --snapshot-dir snapshots/DPL_modelT_step_i --data-dir DPI2I_path_to_GTA52cityscapes --data-label-folder-target path_to_dual_pseudo_label_stepi --init-weights path_to_model_T
    

    3.3. Update path_to_model_Swith path to best 1 model, update path_to_model_Twith path to best 1 model, adjust parameter threshenlen to 0.25, then repeat 3.1-3.2 for 3 more rounds.

Single path warm up

If you want to train DPL from the very begining, training example of single path warm up is also provided as below:

Single Path Warm-up

Download 1 trained with labeled source dataset Source_only [Google_Drive, BaiduYun(Code:fjdw)].

  1. Train original cycleGAN (without Dual Path Image Translation).

    cd CycleGAN_DPL
    python train.py --dataroot ../data --name ori_cycle --A_setroot GTA5/images --B_setroot Cityscapes/leftImg8bit/train --model cycle_diff --lambda_semantic 0
    
  2. Generate transferred GTA5->Cityscapes images with original cycleGAN.

    python test.py --name ori_cycle --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/GTA5/images --model_suffix A  --results_dir path_to_ori_cycle_GTA52cityscapes
    
  3. Before warm up, pretrain 1 without SSL and restore the best checkpoint in path_to_pretrained_T:

    cd ../DPL_master
    python DPL.py --snapshot-dir snapshots/pretrain_T --init-weights path_to_initialization_S --data-dir path_to_ori_cycle_GTA52cityscapes
    
  4. Warm up 1.

    4.1. Generate labels on source dataset with label correction.

    python SSL_source.py --set train --data-dir path_to_ori_cycle_GTA52cityscapes --init-weights path_to_pretrained_T --threshdelta 0.3 --thresh 0.9 --threshlen 0.65 --save path_to_corrected_label_step1_or_step2 
    

    4.2. Generate pseudo labels on target dataset.

    python SSL.py --set train --data-list-target ./dataset/cityscapes_list/train.txt --init-weights path_to_pretrained_T  --thresh 0.9 --threshlen 0.65 --save path_to_pseudo_label_step1_or_step2 
    

    4.3. Train 1 with label correction.

    python DPL.py --snapshot-dir snapshots/label_corr_step1_or_step2 --data-dir path_to_ori_cycle_GTA52cityscapes --source-ssl True --source-label-dir path_to_corrected_label_step1_or_step2 --data-label-folder-target path_to_pseudo_label_step1_or_step2 --init-weights path_to_pretrained_T          
    

4.4 Update path_to_pretrained_T with path to best model in 4.3, repeat 4.1-4.3 for one more round.

More Experiments

  • For SYNTHIA to Cityscapes scenario, please train DPL with "--source synthia" and change the data path.
  • For training on "FCN-8s with VGG16", please train DPL with "--model VGG".

Citation

If you find our paper and code useful in your research, please consider giving a star and citation.

@inproceedings{cheng2021dual,
  title={Dual Path Learning for Domain Adaptation of Semantic Segmentation},
  author={Cheng, Yiting and Wei, Fangyun and Bao, Jianmin and Chen, Dong and Wen, Fang and Zhang, Wenqiang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9082--9091},
  year={2021}
}

Acknowledgment

This code is heavily borrowed from BDL.

Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
Submit issues and feature requests for our API here.

AIx GPT API Submit issues and feature requests for our API here. See https://apps.aixsolutionsgroup.com for more info. Python Quick Start pip install

AIx Solutions 7 Mar 27, 2022
A python gui program to generate reddit text to speech videos from the id of any post.

Reddit text to speech generator A python gui program to generate reddit text to speech videos from the id of any post. Current functionality Generate

Aadvik 17 Dec 19, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022